STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME MECH103 – Intro to HVACR

Created by: Stan Skowronek

Updated by:

Canino School of Engineering Technology

Department: Mechanical & Energy Systems

Semester/Year: 2019

A. <u>TITLE</u>: Intro to HVACR

B. <u>COURSE NUMBER</u>: MECH103

C. <u>CREDIT HOURS</u>: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 3
Lecture Hours: 2 per week
Lab Hours: (1) three-hour lab per week
Other: per week

Course Length: 15 Weeks

D. <u>WRITING INTENSIVE COURSE</u>: Yes \square No \boxtimes

E. <u>GER CATEGORY</u>: None: Yes: GER *If course satisfies more than one*: GER

F. <u>SEMESTER(S) OFFERED</u>: Fall Spring Fall & Spring

G. <u>COURSE DESCRIPTION</u>:

This course is an introduction to heating and air conditioning systems used to achieve a comfortable indoor environment. It includes a straightforward study of heating and cooling loads and the applicable heat transfer processes. The concepts of air and water heating/ cooling systems and related controls are studied to provide students the baseline knowledge to continue their technical training. The topic of Indoor Air Quality of a building is introduced along with ASHRAE standards. Two hours lecture, two hours laboratory per week.

H. <u>PRE-REQUISITES</u>: None Yes If yes, list below:

<u>CO-REQUISITES</u>: None Yes If yes, list below:

I. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

Course Student Learning Outcome [SLO]	<u>Program Student Learning</u> <u>Outcome</u>	<u>GER</u> [If Applicable]	<u>ISLO & SUBSETS</u>	
	[PSLO]			
MECH103.1 Heat transfer			ISLO	Subsets
Demonstrate understanding of basic heat			ISLO	Subsets
transfer as it applies to HVAC			ISLO	Subsets
				Subsets
MECH103.2 AC control circuits and			ISLO	Subsets
components			ISLO	Subsets
Students demonstrate an understanding of			ISLO	Subsets
electrical control components and circuits				Subsets
MECH103.3 HVAC Concepts			ISLO	Subsets
Students can explain introductory heating			ISLO	Subsets
and cooling system concepts			ISLO	Subsets
				Subsets
MECH103.4 Heating/ Cooling Load			ISLO	Subsets
Students can perform a block heating load			ISLO	Subsets
			ISLO	Subsets
				Subsets
MECH103 5 Psychrometrics (part of			ISLO	Subsets
Outcome)			ISLO	Subsets
Students demonstrate the use of equipment			ISLO	Subsets
to measure pressure temperature and				Subsets
humidity				5405005
MECH103.6 System Equilibrium and			ISLO	Subsets
Balancing (part of Outcome)			ISLO	Subsets
Students can perform a heat balance on a			ISLO	Subsets
system and report on the results				Subsets
* 1				

	ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
	ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
	ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
	ISLO ISLO ISLO	Subsets Subsets Subsets Subsets

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]
ISLO	ISLO & Subsets
#	
1	Communication Skills
	Oral [O], Written [W]
2	Critical Thinking
	Critical Analysis [CA], Inquiry & Analysis [IA], Problem
	Solving [PS]
3	Foundational Skills
	Information Management [IM], Quantitative Lit,/Reasoning
	[QTR]
4	Social Responsibility
	Ethical Reasoning [ER], Global Learning [GL],
	Intercultural Knowledge [IK], Teamwork [T]
5	Industry, Professional, Discipline Specific Knowledge and
	Skills

*Include program objectives if applicable. Please consult with Program Coordinator

J. <u>APPLIED LEARNING COMPONENT:</u>

Yes 🛛 No 🗌

If YES, select one or more of the following categories:

Classroom/Lab Internship Clinical Placement Practicum Service Learning Community Service

Civic Engagement
Creative Works/Senior Project
Research
Entrepreneurship
(program, class, project)

K. TEXTS:

None required

L. **REFERENCES**:

ASHRAE Fundamentals,

ASHRAE HVAC Applications,

Stein, Benjamin, Building Technology, Mechanical & Electrical Systems, 2nd Edition, Wiley, 1997

M. <u>EQUIPMENT</u>: None Needed:

N. <u>GRADING METHOD</u>: A-F

O. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

Quizzes, homework, hourly exams and a final.

P. <u>DETAILED COURSE OUTLINE</u>:

- 1. 1. Introduction to HVAC
- 1.1. Safety
- **1.2.** Tools and equipment
- **1.3.** Fundamentals of comfort cooling & heating
- 2. Science
- 2.1. Matter
- 2.2. Energy
- 2.3. Temperature
- 2.4. Heat
- 2.5. Pressure
- 3. Comfort Heating and Cooling
- 4. Temperature
- 5. Humidity, Psychrometrics
- 6. Air Purity
- 7. Ventilation, Air Mixtures, Economizers

- 8. **Refrigeration Basics**
- 8.1. Sensible & Latent heat
- 8.2. Refrigerants
- 8.3. Vapor compression cycle
- 8.4. Compressors
- 8.5. Condensers
- 8.6. Refrigerant metering
- 8.7. Piping
- 8.8. Charging and service
- 9. Basic electricity
- 9.1. Power
- 9.2. Motors
- 9.3. Circuits
- 9.4. Controls
- 9.5. Schematics
- **10.** System components
- 10.1. Furnaces
- 10.2. Boilers
- 10.3. AC split systems
- 10.4. Heat pumps, packaged units
- 11. System design
- 11.1. Insulation
- 11.2. Load calculations
- 11.3. Air quality
- 11.4. Air balancing
- 11.5. Ductwork
- 11.6. Equipment selection

Q. <u>LABORATORY OUTLINE</u>: None Yes

- **1.** Tools of the trade
- 2. Tubing fabrication
- 3. Pressure & temperature measurement
- 4. Multimeter introduction
- 5. Control switches
- 6. Low voltage control
- 7. Insulation
- 8. Airflow 1
- 9. Airflow2
- 10. Heat balance1
- 11. Heat balance 2
- 12. Refrigerant state
- 13. Equipment efficiency 1
- 14. Equipment efficiency 2
- 15. Equipment specification