STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME MECH 128 – Electromechanical Technology

Created by: Dr. Lucas Craig

Updated by:

Canino School of Engineering Technology

Department: MET

Semester/Year: Spring 2019

A. TITLE: Electromechanical Technology

B. COURSE NUMBER: MECH 128

C. CREDIT HOURS: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 3
Lecture Hours: 2 per week
Lab Hours: 2 per week
Other: per week

Course Length: 15 Weeks

D. <u>WRITING INTENSIVE COURSE</u>: Yes \square No \boxtimes

E. <u>GER CATEGORY</u>: None: Yes: GER *If course satisfies more than one*: GER

F. <u>SEMESTER(S) OFFERED</u>: Fall Spring Fall & Spring K

G. <u>COURSE DESCRIPTION</u>:

This course provides the knowledge base needed to understand the principles, concepts, and applications of electro-mechanics. It presents problem-solving techniques that are critical for troubleshooting situations. Topics covered include: Nature of motion, simple and compound machines, torque, power transmission, motion devices, electric circuits, electromagnetic circuits and devices, and maintenance procedure for electrical and mechanical machines.

H. <u>**PRE-REQUISITES</u>**: None \boxtimes Yes \boxtimes If yes, list below:</u>

MATH 123 PHYS 121 and PHYS 125

<u>CO-REQUISITES</u>: None Yes If yes, list below:

I. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

<u>Course Student Learning Outcome</u> [SLO]	<u>Program Student Learning</u> <u>Outcome</u> [PSLO]	<u>GER</u> [If Applicable]	<u>ISLO & SUBS</u>	<u>ETS</u>
Explain the interrelationship of electrical and mechanical machine elements and their underlying principles of operation	2, 6		2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Discuss the use of mechanical coupling, gearing, belt drives, chain drives, bearings, and rigging	2, 6		2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Differentiate between electrical, mechanical and pneumatic devices	2, 6		2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Develop basic mechanical and electrical skills	6		2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Work and share responsibilities on a team project	5		4-Soc Respons ISLO ISLO	T Subsets Subsets Subsets
Perform basic calculations	6		2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets

Understand and build controls for electromechanical systems	3, 8, 13	2-Crit Think 5-Ind, Prof, Disc, I ISLO	IA Know Skills Subsets Subsets Subsets
		ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
		ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
		ISLO ISLO ISLO	Subsets Subsets Subsets Subsets

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]	
ISLO	ISLO & Subsets	
#		
1	Communication Skills	
	Oral [O], Written [W]	
2	Critical Thinking	
	Critical Analysis [CA], Inquiry & Analysis [IA], Problem	
	Solving [PS]	
3	Foundational Skills	
	Information Management [IM], Quantitative Lit,/Reasoning	
	[QTR]	
4	Social Responsibility	
	Ethical Reasoning [ER], Global Learning [GL],	
	Intercultural Knowledge [IK], Teamwork [T]	
5	Industry, Professional, Discipline Specific Knowledge and	
	Skills	

*Include program objectives if applicable. Please consult with Program Coordinator

J. <u>APPLIED LEARNING COMPONENT:</u>

Yes 🛛 No 🗌

If YES, select one or more of the following categories:

- Classroom/Lab
 Internship
 Clinical Placement
 Practicum
 Service Learning
 - Community Service

Civic Engagement
Creative Works/Senior Project
Research
Entrepreneurship
(program, class, project)

K. <u>TEXTS</u>:

N/A

L. <u>REFERENCES</u>:

N/A

- M. <u>EQUIPMENT</u>: None Needed:
- N. <u>GRADING METHOD</u>: A-F

O. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

Homework	25%
Exams (3)	30%
Final Exam / Project	45%

P. <u>DETAILED COURSE OUTLINE</u>:

- 1. **Basic Electrical Circuits**
- A. Electrical Conductors and Insulators
- **B.** Resistors and Capacitors
 - C. Current, Voltage, Resistance, and Power
 - D. Series, Parallel, and Series Parallel Circuits
- E. DC Motor Operation
- F. Stepper Motors
- K. Transducers and Sensors
- 2. Data acquisition (DAQ)
- A. Components for data acquisition
- **B.** Software for data acquisition
- 3. Simple machines
- A. Lever
- **B.** Wheel + axle
- C. Pulley

- **D.** Inclined plane + wedge
- E. Screw
- 4. Gearing, Belt, and Chain Drives
- A. Gear Ratio
- B. Torque Ratio
- C. Efficiency
- D. Gear Trains
- E. The V-Belt and replacement procedure
- F. Synchronous Belt Drives
- G. Timing Belt Pulleys
- 5. Rotation, Linear, and Intermittent-Motion Devices
- A. Coupling, Universal Joints, Clutches, Moment of Inertia
- **B.** Rack and Pinion
- C. Cam and Follower
- D. Geneva Drive Mechanism

Q. <u>LABORATORY OUTLINE</u>: None Yes X

- I. Arduino Projects: DFRobot Kits, Projects 1 15
- II. Team Project: Photon
- III. Develop and execute a project