MASTER SYLLABUS

COURSE NUMBER – COURSE NAME
MECH 232 – Machine Design

Created by: Daniel Miller
Updated by: Dr. Lucas Craig

Canino School of Engineering Technology
Department: Mechanical & Energy Technologies
Semester/Year: 2022
A. **TITLE:** Machine Design

B. **COURSE NUMBER:** MECH 232

C. **CREDIT HOURS:** (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

 # Credit Hours: 3
 # Lecture Hours: 2 per week
 # Lab Hours: per week
 Other: 2 hours recitation per week

 Course Length: 15 Weeks

D. **WRITING INTENSIVE COURSE:** Yes ☐ No ☑

E. **GER CATEGORY:** None: ☑ Yes: GER
 If course satisfies more than one: GER

F. **SEMESTER(S) OFFERED:** Fall ☐ Spring ☑ Fall & Spring ☐

G. **COURSE DESCRIPTION:**

 Design of machine elements subjected to static, dynamic and fluctuating loads. Theory includes design and analysis of beams, columns, shafts, mechanical power transmission devices. Stress concentration factors, Goodman. A design project is required for the course. The recitation session will be used for solving numerical problems and consultation on the semester design project.

H. **PRE-REQUISITES:** None ☐ Yes ☑ If yes, list below:

 CONS 272 or ENGS 203 or permission from instructor

 CO-REQUISITES: None ☑ Yes ☐ If yes, list below:
I. **STUDENT LEARNING OUTCOMES:** *(see key below)*

By the end of this course, the student will be able to:

<table>
<thead>
<tr>
<th>Course Student Learning Outcome [SLO]</th>
<th>Program Student Learning Outcome [PSLO]</th>
<th>GER [If Applicable]</th>
<th>ISLO & SUBSETS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Solve fundamental machine element problems to standard engineering format.</td>
<td></td>
<td>5-Ind, Prof, Disc, Know Skills ISLO ISLO</td>
<td>Subsets Subsets Subsets Subsets</td>
</tr>
<tr>
<td>2. Solve problems that have compression, tensile, torsion, and/or eccentric loads.</td>
<td></td>
<td>5-Ind, Prof, Disc, Know Skills ISLO ISLO</td>
<td>Subsets Subsets Subsets Subsets</td>
</tr>
<tr>
<td>3. Apply Mohr’s Circle concept for combined stresses</td>
<td></td>
<td>5-Ind, Prof, Disc, Know Skills ISLO ISLO</td>
<td>Subsets Subsets Subsets Subsets</td>
</tr>
<tr>
<td>4. Determine the allowable load that can be applied to long and short columns</td>
<td></td>
<td>5-Ind, Prof, Disc, Know Skills ISLO ISLO</td>
<td>Subsets Subsets Subsets Subsets</td>
</tr>
<tr>
<td>5. Determine the endurance strength and design members subject to fluctuating loads.</td>
<td></td>
<td>5-Ind, Prof, Disc, Know Skills ISLO ISLO</td>
<td>Subsets Subsets Subsets Subsets</td>
</tr>
<tr>
<td>6. Design a load carrying shaft with keys or couplings.</td>
<td></td>
<td>2-Crit Think ISLO ISLO</td>
<td>Subsets Subsets Subsets Subsets</td>
</tr>
<tr>
<td>No.</td>
<td>Activity</td>
<td>Knowledge and Skills</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Evaluate a mechanical drive system using belts, chains drives or gears.</td>
<td>2-Crit Think ISLO ISLO Subsets Subsets Subsets Subsets Subsets Subsets Subsets Subsets Subsets</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Apply a variety of failure theories to a design analysis.</td>
<td>5-Ind, Prof, Disc, Know Skills ISLO ISLO Subsets Subsets Subsets Subsets Subsets Subsets Subsets Subsets</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Recognize and report the ethical and social responsibilities for a mechanical designer</td>
<td>4-Soc Respons ISLO ISLO Subsets Subsets Subsets Subsets Subsets Subsets Subsets Subsets Subsets</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ISLO ISLO ISLO Subsets Subsets</td>
<td></td>
</tr>
<tr>
<td>ISLO #</td>
<td>ISLO & Subsets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Communication Skills
Oral [O], Written [W]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Critical Thinking
Critical Analysis [CA], Inquiry & Analysis [IA], Problem Solving [PS]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Foundational Skills
Information Management [IM], Quantitative Lit./Reasoning [QTR]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Social Responsibility
Ethical Reasoning [ER], Global Learning [GL], Intercultural Knowledge [IK], Teamwork [T]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Industry, Professional, Discipline Specific Knowledge and Skills</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Include program objectives if applicable. Please consult with Program Coordinator
J. **APPLIED LEARNING COMPONENT:**
 Yes ☒ No ☐

 If YES, select one or more of the following categories:

 - ☒ Classroom/Lab
 - ☐ Internship
 - ☐ Clinical Placement
 - ☐ Practicum
 - ☐ Service Learning
 - ☐ Community Service
 - ☐ Civic Engagement
 - ☐ Creative Works/Senior Project
 - ☐ Research
 - ☐ Entrepreneurship (program, class, project)

K. **TEXTS:**

L. **REFERENCES:**

 Mechanical Engineering Design by Shigley, 6th edition, Prentice Hall
 Static and Dynamics by Hibbler, 9th edition, Prentice Hall

M. **EQUIPMENT:** None ☐ Needed: The use of the Material Testing Lab (NS110) and Machine shop (NS106) are required

N. **GRADING METHOD:** A-F

O. **SUGGESTED MEASUREMENT CRITERIA/METHODS:**

 Unit Exams = 35 %
 Final Exam = 15 %
 Homework/Quizzes = 15 %
 Recitation Assignments/Design Projects = 35%

P. **DETAILED COURSE OUTLINE:**

I. Introduction
 A. Design Process and Calculations
 B. Basic Sizes and Units
 C. Design Functions and Requirements
 D. Material (Ferrous, Non Ferrous, Composites) Properties
 E. Material Selection

II. Stress and Deformation Analysis
 A. Direct Shear
 B. Torsional Shear
C. Tensile and Compression
D. Bending
E. Beam Deflection
F. Concentrated Bending Moments
G. Stress Concentrations
H. Combined Normal Stresses

III. Combined Stresses and Mohr’s circle
 A. Application and use for Mohr’s Circle
 B. Principal Stress Element
 C. Drawing and Interpreting the Circle

IV. Design for Different Types of Loading
 A. Identifying Loading Conditions and Stress Ratio
 B. Endurance Strength and Fatigue Failure
 C. Estimated Endurance Strength
 D. Design Factors
 E. Prediction of Failure Analysis

V. Column Design
 A. Column Analysis
 B. Euler and Johnson Formula
 C. Spreadsheet Design and Analysis of Columns

VI. Belt and Chain Drives
 A. Type of Belt Drives
 B. Belt Drive Design
 C. Chain Drive Design

VII. Gears
 A. Type of Gears
 B. Gear Nomenclature
 C. Gear Train Ratios and Design
 D. Forces Developed in Gears

Q. LABORATORY OUTLINE: None ☒ Yes ☐

I. The recitation time is setup to provide time for students to solve more complex and time consuming problems than is practical for homework. The assignments tie in with the unit topic for that week.

II. Students work in teams to design a solution to a selected problem they choose. Examples include, but are not limited to (car jack, portable crane, transfer device, carton packer, oscillating spindle sander, robot gripper, chain conveyor)