STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME MECH 241 – FLUID MECHANICS

Created by: Dr. Lucas Craig

Updated by:

Canino School of Engineering Technology !

Department: MET

Semester/Year: Spring 2019

A. <u>TITLE</u>: Fluid Mechanics

B. <u>COURSE NUMBER</u>: MECH 241

C. <u>CREDIT HOURS</u>: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 3 # Lecture Hours: 3 per week # Lab Hours: per week Other: per week

Course Length: 15 Weeks

D. WRITING INTENSIVE COURSE: Yes No 🛛

E. <u>GER CATEGORY</u>: None: Yes: GER *If course satisfies more than one*: GER

F. <u>SEMESTER(S) OFFERED</u>: Fall Spring Fall & Spring

G. <u>COURSE DESCRIPTION</u>:

This course develops a basic knowledge of fluids under static and dynamic applications. Properties of fluids, pressure, fluid statics, Bernoulli's and the energy equation are explored in respect to applications in the mechanical industry. Flow rate, pipe sizing, and minor losses in piping systems are addressed.

H. <u>**PRE-REQUISITES</u>**: None \boxtimes Yes \boxtimes If yes, list below:</u>

MATH 123 PHYS 121 PHYS 125

<u>CO-REQUISITES</u>: None Yes If yes, list below:

I. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

Course Student Learning Outcome [SLO]	<u>Program Student Learning</u> <u>Outcome</u> [PSLO]	<u>GER</u> [If Applicable]	ISLO & SUBSET	<u>'S</u>
Define and analyze hydrostatic forces.	6		2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Define and analyze the ideal gas law.	6		2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Determine horsepower and efficiency for pumps and fans.	6		2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Size pipes, pumps, motors, cylinders, fans, ducts and accumulators.	6,7		2-Crit Think 1-Comm Skills ISLO	PS W Subsets Subsets
Determine Reynolds number and differentiate between laminar and turbulent flow. Use Darcy's equation to calculate the friction losses of pipes and fittings.	6		2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Manipulate Pascal and Bernoulli's laws to solve basic fluid mechanic problems.	6		2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets

	ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
	ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
	ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
	ISLO ISLO ISLO	Subsets Subsets Subsets Subsets

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]		
ISLO	ISLO & Subsets		
#			
1	Communication Skills		
	Oral [O], Written [W]		
2	Critical Thinking		
	Critical Analysis [CA], Inquiry & Analysis [IA], Problem		
	Solving [PS]		
3	Foundational Skills		
	Information Management [IM], Quantitative Lit,/Reasoning		
	[QTR]		
4	Social Responsibility		
	Ethical Reasoning [ER], Global Learning [GL],		
	Intercultural Knowledge [IK], Teamwork [T]		
5	Industry, Professional, Discipline Specific Knowledge and		
	Skills		

*Include program objectives if applicable. Please consult with Program Coordinator

J. <u>APPLIED LEARNING COMPONENT:</u>

Yes 🛛 No 🗌

If YES, select one or more of the following categories:

Classroom/LabCivic EngagementInternshipCreative Works/Senior ProjectClinical PlacementResearchPracticumEntrepreneurshipService Learning(program, class, project)Community ServiceCommunity Service

K. <u>TEXTS</u>:

Cengel, Yunus A. and Cimbala, John M., Fluid Mechanics 3e , McGraw-Hill 2014., ISBN: 9780073380322.

Or

Mott, R. Applied Fluid Mechanics (7th Edition). New York: Prentice Hall, 2014.

L. <u>REFERENCES</u>:

N/A

M. <u>EQUIPMENT</u>: None Needed:

N. **<u>GRADING METHOD</u>**: A-F

O. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

Homework	25%
Exams (3)	60%
Final Exam / Project	15%

P. <u>DETAILED COURSE OUTLINE</u>:

- I. Intro to Fluid Mechanics
 - A. Fluid as a liquid or gas
 - **B.** Power vs. Transportation systems
 - C. Pascal's, Bernoulli's law (introduced)
- **II. Properties of Fluids**
 - A. Weight, Density, and Specific Gravity
 - **B.** Force, Pressure, and Head
 - C. Pascal's Law
 - **D. Bulk Modulus**
 - **E.** Viscosity
- **III. Energy and Forces**
 - A. Review Mechanics

B. Pressures in liquids at rest

C. Atmospheric Pressure

D. Manometers

E. Forces on plane surfaces

F. Forces on inclined surfaces

G. Buoyancy

H. Bernoulli's Equations applications

IV. Sizing pipes and ducts

A. Flow Rate

B. Laminar flow and Turbulent flow

C. Losses due to valves and fittings

D. Compressible and Incompressible Flow

V. Pump Sizing

A. Pumps

B. Motors

C. Horsepower and Efficiency

D. Sizing Hydraulic Cylinders

VI. Air Handling Systems

A. Sizing Fans

B. Velocity and Pressure Measurement

Q. <u>LABORATORY OUTLINE</u>: None X Yes