MASTER SYLLABUS

COURSE NUMBER – COURSE NAME
MECH 242 – Fluid Power Lab

Created by: Daniel Miller
Updated by: Christopher Mayville

Canino School of Engineering Technology
Department: Mechanical & Energy Technologies
Semester/Year: Fall 2021
A. **TITLE**: Fluid Power Lab

B. **COURSE NUMBER**: MECH 242

C. **CREDIT HOURS**: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

 # Credit Hours: 1
 # Lecture Hours: per week
 # Lab Hours: (1) two-hour lab per week
 Other: per week

 Course Length: Weeks

D. **WRITING INTENSIVE COURSE**: Yes ☑ No ☐

E. **GER CATEGORY**: None: ☐ Yes: GER

 If course satisfies more than one: GER

F. **SEMESTER(S) OFFERED**: Fall ☑ Spring ☐ Fall & Spring ☐

G. **COURSE DESCRIPTION**: A study of force and motion in hydraulic and pneumatic cylinders, involving cylinders, pumps, valves, and accumulators. Electrical, hydraulic, and pneumatic controls will be studied, with an emphasis on sequential operation of fluid devices. Both electrical and fluid schematic diagrams will be examined.

H. **PRE-REQUISITES**: None ☐ Yes ☑ If yes, list below:

 CO-REQUISITES: None ☐ Yes ☑ If yes, list below:

 ENGS 314
I. **STUDENT LEARNING OUTCOMES:** *(see key below)*

By the end of this course, the student will be able to:

<table>
<thead>
<tr>
<th>Course Student Learning Outcome [SLO]</th>
<th>Program Student Learning Outcome [PSLO]</th>
<th>GER [If Applicable]</th>
<th>ISLO & SUBSETS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Draw and interpret schematic diagrams consistent with industrial practice related to fluid power systems</td>
<td></td>
<td>5-Ind, Prof, Disc, Know Skills ISLO ISLO</td>
<td>Subsets Subsets Subsets Subsets</td>
</tr>
<tr>
<td>2. Apply Pascal and Bernoulli’s laws to investigate the relationships within fluid systems</td>
<td></td>
<td>2-Crit Think ISLO ISLO</td>
<td>Subsets Subsets Subsets Subsets</td>
</tr>
<tr>
<td>3. Determine horsepower and efficiency for fluid power systems.</td>
<td></td>
<td>2-Crit Think ISLO ISLO</td>
<td>Subsets Subsets Subsets Subsets</td>
</tr>
<tr>
<td>4. Size pipes, pumps, motors, cylinders, and accumulators.</td>
<td></td>
<td>5-Ind, Prof, Disc, Know Skills ISLO ISLO</td>
<td>Subsets Subsets Subsets Subsets</td>
</tr>
<tr>
<td>5. Size air compressors to handle the pneumatic systems requirement.</td>
<td></td>
<td>5-Ind, Prof, Disc, Know Skills ISLO ISLO</td>
<td>Subsets Subsets Subsets Subsets</td>
</tr>
<tr>
<td>6. Interpret sequence diagrams that utilize relay and coil logic.</td>
<td></td>
<td>2-Crit Think ISLO ISLO</td>
<td>Subsets Subsets Subsets Subsets</td>
</tr>
<tr>
<td>7. Work in teams to accurately collect data and report results in an industrial accepted format</td>
<td>1-Comm Skills ISLO ISLO</td>
<td>Subsets Subsets Subsets Subsets</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISLO ISLO ISLO</td>
<td>Subsets Subsets Subsets Subsets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISLO ISLO ISLO</td>
<td>Subsets Subsets Subsets Subsets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISLO ISLO ISLO</td>
<td>Subsets Subsets Subsets Subsets</td>
<td></td>
</tr>
<tr>
<td>KEY</td>
<td>Institutional Student Learning Outcomes [ISLO 1 – 5]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISLO #</td>
<td>ISLO & Subsets</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 1 | Communication Skills
Oral [O], Written [W] |
| 2 | Critical Thinking
Critical Analysis [CA], Inquiry & Analysis [IA], Problem Solving [PS] |
| 3 | Foundational Skills
Information Management [IM], Quantitative Lit./Reasoning [QTR] |
| 4 | Social Responsibility
Ethical Reasoning [ER], Global Learning [GL], Intercultural Knowledge [IK], Teamwork [T] |
| 5 | Industry, Professional, Discipline Specific Knowledge and Skills |

Include program objectives if applicable. Please consult with Program Coordinator
J. **APPLIED LEARNING COMPONENT:**
 Yes ☒ No ☐

 If YES, select one or more of the following categories:

 - Classroom/Lab
 - Internship
 - Clinical Placement
 - Practicum
 - Service Learning
 - Community Service
 - Civic Engagement
 - Creative Works/Senior Project
 - Research
 - Entrepreneurship
 (program, class, project)

K. **TEXTS:**

L. **REFERENCES:**

 Industrial Hydraulics Manual, Vickers
 Closed loop Electro hydraulic Systems Manual, Vickers

M. **EQUIPMENT:** None ☐ Needed: Fluid Laboratory equipment and Computer Drafting room

N. **GRADING METHOD:** A-F

O. **SUGGESTED MEASUREMENT CRITERIA/METHODS:**

 Homework, Lab reports

P. **DETAILED COURSE OUTLINE:**

I. Pneumatic Circuits
 A. Schematic Diagrams and Symbols
 1. Read and draw schematics
 B. Automation Studio Software
 C. Sequencing Logic
 D. System Components
 E. Pressure Loss vs. Line Length Experiment

II. Hydraulic Circuits
 A. Schematic Diagrams and Symbols
 B. Automation Studio Software
 C. Sequencing Logic
 D. System Components
 E. Hydraulic Test Stand Experiment
III. Electro-Pneumatic Circuits
 A. Circuit Logic
 B. PLC Integration and Linking Components in Software

Q. LABORATORY OUTLINE: None ☒ Yes ☐