STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME MECH 242 – Fluid Power Lab

Created by: Daniel Miller

Updated by: Christopher Mayville

Canino School of Engineering Technology

Department: Mechanical & Energy Technologies

Semester/Year: Fall 2021

A.	<u>TITLE</u> : Fluid Power Lab
В.	COURSE NUMBER: MECH 242
C.	<u>CREDIT HOURS</u> : (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)
	# Credit Hours: 1 # Lecture Hours: per week # Lab Hours: (1) two-hour lab per week Other: per week
	Course Length: Weeks
D.	WRITING INTENSIVE COURSE: Yes \(\square\) No \(\square\)
Е.	GER CATEGORY: None: Yes: GER If course satisfies more than one: GER
F.	$\underline{\mathbf{SEMESTER(S)\ OFFERED}}\mathbf{:}\ \mathbf{Fall}\ \boxtimes\ \ \mathbf{Spring}\ \square\ \ \mathbf{Fall}\ \&\ \mathbf{Spring}\ \square$
G.	COURSE DESCRIPTION:
valves empha	ly of force and motion in hydraulic and pneumatic cylinders, involving cylinders, pumps, and accumulators. Electrical, hydraulic, and pneumatic controls will be studied, with an asis on sequential operation of fluid devices. Both electrical and fluid schematic diagrams e examined.
Н.	PRE-REQUISITES: None \boxtimes Yes \square If yes, list below:
	CO-REQUISITES : None ☐ Yes ⊠ If yes, list below:
ENGS	
-1.100	· U = 1

I. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

Course Student Learning Outcome [SLO]	Program Student Learning Outcome [PSLO]	GER [If Applicable]	ISLO & SUB	<u>SETS</u>
Draw and interpret schematic diagrams consistent with industrial practice related to fluid power systems			5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets
2. Apply Pascal and Bernoulli's laws to investigate the relationships within fluid systems			2-Crit Think ISLO ISLO	Subsets Subsets Subsets Subsets
3. Determine horsepower and efficiency for fluid power systems.			2-Crit Think ISLO ISLO	Subsets Subsets Subsets Subsets
4. Size pipes, pumps, motors, cylinders, and accumulators.			5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets
5. Size air compressors to handle the pneumatic systems requirement.			5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets
6. Interpret sequence diagrams that utilize relay and coil logic.			2-Crit Think ISLO ISLO	Subsets Subsets Subsets Subsets

7. Work in teams to accurately collect data	1-Comm Skills	Subsets
and report results in an industrial accepted	ISLO	Subsets
format	ISLO	Subsets
		Subsets
	ISLO	Subsets
	ISLO	Subsets
	ISLO	Subsets
		Subsets
	ISLO	Subsets
	ISLO	Subsets
	ISLO	Subsets
		Subsets
	ISLO	Subsets
		Subscis

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]		
ISLO	ISLO & Subsets		
#			
1	Communication Skills		
	Oral [O], Written [W]		
2	Critical Thinking		
	Critical Analysis [CA] , Inquiry & Analysis [IA] , Problem		
	Solving [PS]		
3	Foundational Skills		
	Information Management [IM], Quantitative Lit,/Reasoning		
	[QTR]		
4	Social Responsibility		
	Ethical Reasoning [ER], Global Learning [GL],		
	Intercultural Knowledge [IK], Teamwork [T]		
5	Industry, Professional, Discipline Specific Knowledge and		
	Skills		

^{*}Include program objectives if applicable. Please consult with Program Coordinator

J.	APPLIED LEARNING COMPONENT: Yes ⊠ No □		
	If YES, select one or more of the following categories:		
K.	<u>TEXTS</u> :		
Daine	s, James R., Fluid Power Hydraulics and Pneumatics, Goodheart-Wilcox Company, Inc., 2009		
L.	REFERENCES:		
"Fluid Power with Applications" - 5th edition, by Anthony Esposito, Prentice Hall Inc., 2000 Industrial Hydraulics Manual, Vickers Closed loop Electro hydraulic Systems Manual, Vickers			
M. room	EQUIPMENT: None Needed: Fluid Laboratory equipment and Computer Drafting		
N.	GRADING METHOD: A-F		
О.	SUGGESTED MEASUREMENT CRITERIA/METHODS:		
Home	ework, Lab reports		
P.	DETAILED COURSE OUTLINE:		
I. Pneumatic Circuits A. Schematic Diagrams and Symbols 1. Read and draw schematics B. Automation Studio Software C. Sequencing Logic D. System Components E. Pressure Loss vs. Line Length Experiment			
II. Hydraulic Circuits A. Schematic Diagrams and Symbols B. Automation Studio Software			

C. Sequencing Logic
D. System Components

E. Hydraulic Test Stand Experiment

- **III. Electro-Pnuematic Circuits**
 - A. Circuit Logic
 - **B. PLC Integration and Linking Components in Software**
- Q. LABORATORY OUTLINE: None \boxtimes Yes \square