STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

MECH 261 - MET Electricity

CIP Code: 15.0805

For assistance determining CIP Code, please refer to this webpage https://nces.ed.gov/ipeds/cipcode/browse.aspx?y=55 or reach out to Sarah Todd at todds@canton.edu

Created by: Dr. Lucas Craig

Updated by:

SCHOOL OF ENGINEERING TECHNOLOGY MECHANICAL ENGINEERING TECHNOLOGY

- A. TITLE: MET Electricity
- B. COURSE NUMBER: MECH 261
- C. CREDIT HOURS (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity):

```
# Credit Hours: 4
# Lecture Hours __ 3_ per Week
# Lab Hours _2_ Week
Other per Week
```

Course Length (# of Weeks): 15 Weeks

- D. WRITING INTENSIVE COURSE: N/A
- E. GER CATEGORY: N/A
 Does course satisfy more than one GER category? If so, which one?
- F. SEMESTER(S) OFFERED: Fall and Spring
- G. COURSE DESCRIPTION:

Fundamentals of alternating current circuits.

- H. PRE-REQUISITES: PHYS 122/126 or PHYS 132/136 CO-REQUISITES: Pre-Calculus Algebra (MATH 123)
- I. STUDENT LEARNING OUTCOMES:

Course Student Learning Outcome [SLO]	<u>PSLO</u>	<u>GER</u>	<u>ISLO</u>
a. Review DC electrical circuits	1		2. Crit. Thinking 5. Industry, Professional, Discipline-Specific Knowledge and Skills
b. Analyze different types of AC electrical circuits.	1		2. Crit. Thinking 5. Industry, Professional, Discipline-Specific Knowledge and Skills

c. Use electrical measuring instruments properly.	4	2. Crit. Thinking 5. Industry, Professional, Discipline-Specific Knowledge and Skills
d. Understand single-phase and three-phase circuits	1	2. Crit. Thinking 5. Industry, Professional, Discipline-Specific Knowledge and Skills.
e. Discuss electromagnetic induction and its application in motors & generators	1	2. Crit. Thinking 5. Industry, Professional, Discipline-Specific Knowledge and Skills.
f. Discuss the principle operation of transformers, motors, and generators.	1	2. Crit. Thinking 5. Industry, Professional, Discipline-Specific Knowledge and Skills.

KEY	Institutional Student Learning Outcomes		
	[ISLO 1 – 5]		
ISLO	ISLO & Subsets		
#			
1	Communication Skills		
	Oral [O], Written [W]		
2	Critical Thinking		
	Critical Analysis [CA] , Inquiry & Analysis [IA] ,		
	Problem Solving [PS]		
3	Foundational Skills		
	Information Management [IM], Quantitative		
	Lit,/Reasoning [QTR]		
4	Social Responsibility		
	Ethical Reasoning [ER], Global Learning [GL],		
	Intercultural Knowledge [IK], Teamwork [T]		
5	Industry, Professional, Discipline Specific		
	Knowledge and Skills		

J.	APPLIED LEARNING COMPONENT:	Yes_x No	
	If Yes, select one or more of the following categories:		
	Classroom/Lab_x Internship Clinical Practicum Practicum Service Learning Community Service	Civic Engagement Creative Works/Senior Project Research Entrepreneurship (program, class, project)	

K. TEXTS:

Herman, Stephen. Delmar's Standard Book of Electricity, 5th ed.

Clifton Park: Delmar Learning, 2016

- L. REFERENCES: N/A
- M. EQUIPMENT: Standard electronic laboratory equipment.
- N. GRADING METHOD: A-F
- O. SUGGESTED MEASUREMENT CRITERIA/METHODS:
 - Tests
 - Quizzes
 - Homework assignments
 - Lab projects

P. DETAILED COURSE OUTLINE:

- 1. DC circuit review
 - A. Fundamental Units
 - B. Ohm's Law
 - C. Series/Parallel Circuits
 - D. Work, power, energy
- 2. Magnetism
 - A. Permanent Magnets
 - B. Electromagnets
 - C. Magnetic Circuits
- 3. Inductance
 - A Definition
 - B. Units of Measurement
 - C. Time Constant
 - D. Self Inductance
 - E. Lenz's Law
 - F. Mutual Inductance
 - G. RL circuits
- 4. Capacitance
 - A. Definition &
 - B. Units of Measurement &
 - C. Time Constant
 - D. RC Circuits
- 5. Single Phase Circuits
 - A. Phase Relations
 - B. Active and Reactive Powers
 - C. Power Factor
 - D. RLC Circuits
 - E. Resonance Circuits
- 6. Three Phase Circuits
 - A. Wye Connection, Line/Phase Voltages and Currents
 - B. Delta Connection, Line/Phase Voltages and Currents

- C. Powers and Power Factor
- D. Power Sources and Loads
- 7. Voltage/Current Generation
 - A. Theory
 - B. Sine Wave and DC Outputs
 - C. Peak, Effective, Average Values
 - D. AC and DC Generator
- 8. Transformers
 - A. Theory of Operation
 - B. Load Operation
 - C. Phasing of the Windings
 - D. Power Calculations
- 9. Motors
 - A. Theory of Operation
 - B. Simple DC Motors
 - C. Shunt and Series Motors
 - D. Ac Motor Theory
 - E. Three Phase Induction Motors
 - F. Single Phase Induction Motors

Q. LABORATORY OUTLINE:

- 1. INTRODUCTION TO THE OSCILLOSCOPE
- 2. CAPACITIVE DISCHARGE FLASHER and
- 3. RAMP GENERATOR
- 4. TRANSFORMER APPLICATIONS
- 5. RC CIRCUIT CHARACTERISTICS
- 6. SERIES RESONANCE
- 7. SINGLE PHASE INDUCTION MOTOR