STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME MECH 341 – INTERMEDIATE FLUID MECHANICS

Created by: Dr. Lucas Craig

Updated by:

Canino School of Engineering Technology

Department: MET

Semester/Year: Fall 2021

A. <u>TITLE</u>: Intermediate Fluid Mechanics

B. <u>COURSE NUMBER</u>: MECH 341

C. <u>CREDIT HOURS</u>: 3 credit hour(s) per week for 15 weeks

One hour of (50 minutes) of lecture 3 times a week

Two to three hours of lab or clinical per week

Two hours of recitation per week

40 hours of internship

D. <u>WRITING INTENSIVE COURSE</u>: Yes \square No \boxtimes

E. <u>GER CATEGORY</u>: None: Yes: GER *If course satisfies more than one*: GER

F. <u>SEMESTER(S) OFFERED</u>: Fall Spring Fall & Spring

G. <u>COURSE DESCRIPTION</u>:

This course is an intermediate step in students understanding of fluid mechanics. Topics include fluid kinematics, Bernoulli's equation, mass, energy, and momentum analysis of flow systems, internal flow, external flow, compressible flow, and differential analysis of fluid flows. The continuity, stream function, and Navier-Stokes equations are development for 2-D and 3-D flows. The introduction of similitude and dimensional analysis is also included.

H. <u>PRE-REQUISITES</u>: None Yes Y If yes, list below:

MECH 241 and 45 credits or more or permission of the instructor

<u>CO-REQUISITES</u>: None Yes If yes, list below:

I. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

<u>Course Student Learning Outcome</u> [SLO]	<u>Program Student Learning</u> <u>Outcome</u> [PSLO]	<u>GER</u> [If Applicable]	<u>ISLO & SUBS</u>	<u>ETS</u>
Visualize and calculate fluid flow fields, in particular, streamlines.	6		2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Determine the forces acting on a control volume and apply them to Newton's 2nd law.	6		2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Apply Reynolds and other non-dimensional numbers in the solution of fluid problems.	6		2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Discriminate when to simplify the Navier- Stokes equations and demonstrate its proper use.	6		2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Develop the stream functions necessary to solve 2-D problems.	1,6		2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Explain the different types of drag associated with external flow and calculate drag and explain the point of flow separation.	6		2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets

Comprehend the fundamental concept of compressible flow and the development of shock waves.	6	2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Produce flow calculations around objects using a CFD package.	2	2-Crit Think 5 – Skills of the industry	PS Subsets Subsets Subsets

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]
ISLO	ISLO & Subsets
#	
1	Communication Skills
	Oral [O], Written [W]
2	Critical Thinking
	Critical Analysis [CA] , Inquiry & Analysis [IA] , Problem
	Solving [PS]
3	Foundational Skills
	Information Management [IM], Quantitative Lit,/Reasoning
	[QTR]
4	Social Responsibility
	Ethical Reasoning [ER], Global Learning [GL],
	Intercultural Knowledge [IK], Teamwork [T]
5	Industry, Professional, Discipline Specific Knowledge and
	Skills

*Include program objectives if applicable. Please consult with Program Coordinator

J. <u>APPLIED LEARNING COMPONENT:</u>

Yes 🛛 No 🗌

If YES, select one or more of the following categories:

Classroom/LabCivic EngagementInternshipCreative Works/Senior ProjectClinical PlacementResearchPracticumEntrepreneurshipService Learning(program, class, project)Community ServiceCommunity Service

K. <u>TEXTS</u>:

Cengel, Yunus A. and Cimbala, John M., Fluid Mechanics 3e , McGraw-Hill 2014., ISBN: 9780073380322.

Or

Mott, R. Applied Fluid Mechanics (7th Edition). New York: Prentice Hall, 2014.

L. <u>REFERENCES</u>:

N/A

M. <u>EQUIPMENT</u>: None \boxtimes Needed:

N. **<u>GRADING METHOD</u>**: A-F

O. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

Homework, exams, projects

P. <u>DETAILED COURSE OUTLINE</u>:

- I. Basic fluid mechanics (Review)
 - A. Fluid mass & weight
 - 1.Density
 - 2.Specific weight
 - B. Ideal gas laws
 - C. Viscosity
 - D. Compressibility of fluids and speed of sound
 - E. Pressure
 - 1.Vapor
 - 2.Surface tension
- II. Fluid Statics (Review)
 - A. Pressure

- 1.Incompressible
- 2.Compressible
- B. Pressure measurement
 - 1.Manometry
 - 2.Gauges
 - 3.Electronics
- C. Hydrostatic forces
- D. Archimedes' Principles (Buoyancy)
- III. Fluid Kinematics
 - A. Newton's Second Law
 - B. Flow patterns and flow visualization
 - C. Vorticity and rotationality
 - D. Reynolds Transport Theorem
- IV. Mass and energy analysis of flow systems
 - A. Continuity equation
 - B. Mechanical energy and efficiency
 - C. Bernoulli equation
 - D. Energy equation
- V. Momentum analysis of flow systems
 - A. Linear and angular momentum
 - B. Application of momentum equations
- VI. Dimensionless analysis
 - A. Buckingham Pi Theorem
 - B. Dimensionless groups
- VII. Differential analysis
 - A. Continuity equation
 - B. Stream function
 - C. Navier-Stokes equations
 - D. Flow between parallel plates
 - E. Steady flow in round tube
- VIII. External flows
 - A. Boundary layer definition, flat plate friction, boundary layer thickness
 - B. Drag of bodies, lift of bodies
 - C. Friction vs. pressure drag
 - IX. Compressible flow
 - A. Ideal gas relationship
 - B. Mach number and speed of sound
 - C. Isentropic flow
 - D. Non-isentropic flow
 - E. 2-D compressible flow

Q. <u>LABORATORY OUTLINE</u>: None X Yes

STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME MECH 341 – INTERMEDIATE FLUID MECHANICS

Created by: Dr. Lucas Craig

Updated by:

Canino School of Engineering Technology

Department: MET

Semester/Year: Spring 2019

A. <u>TITLE</u>: Intermediate Fluid Mechanics

B. <u>COURSE NUMBER</u>: MECH 341

C. <u>CREDIT HOURS</u>: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 3
Lecture Hours: 3 per week
Lab Hours: per week
Other: per week

Course Length: 15 Weeks

D. <u>WRITING INTENSIVE COURSE</u>: Yes \square No \boxtimes

E. <u>GER CATEGORY</u>: None: Yes: GER *If course satisfies more than one*: GER

F. <u>SEMESTER(S) OFFERED</u>: Fall Spring Fall & Spring

G. <u>COURSE DESCRIPTION</u>:

This course is an intermediate step in students understanding of fluid mechanics. Topics include fluid kinematics, Bernoulli's equation, mass, energy, and momentum analysis of flow systems, internal flow, external flow, compressible flow, and differential analysis of fluid flows. The continuity, stream function, and Navier-Stokes equations are development for 2-D and 3-D flows. The introduction of similitude and dimensional analysis is also included.

H. <u>**PRE-REQUISITES:**</u> None \boxtimes Yes \boxtimes If yes, list below:

MECH 241 and junior level status or permission of the instructor

<u>CO-REQUISITES</u>: None Yes I If yes, list below:

I. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

<u>Course Student Learning Outcome</u> [SLO]	<u>Program Student Learning</u> <u>Outcome</u> [PSLO]	<u>GER</u> [If Applicable]	<u>ISLO & SUBS</u>	<u>SETS</u>
Distinguish between streamlines, streaklines, pathlines, and timelines.	6		2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Develop and understanding of the Bernoulli equation and its applications along with conservation of mass	1,6		2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Determine the forces acting on a control volume and apply them to Newton's 2nd law.	6		2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Apply Reynolds and other non-dimensional numbers in the solution of fluid problems.	6		2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Discriminate when to simplify the Navier- Stokes equations and demonstrate its proper use.	6		2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Develop the stream functions necessary to solve 2-D problems.	1,6		2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets

Analyze fluid flow in different situations such as annulus flow, rotating disc, and round tubes	6	2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Explain the different types of drag associated with external flow and calculate drag and the point of flow separation.	6	2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Comprehend the fundamental concept of compressible flow and the development of shock waves.	6	2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Produce flow calculations around objects using a CFD package.	2	2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]
ISLO	ISLO & Subsets
#	
1	Communication Skills
	Oral [O], Written [W]
2	Critical Thinking
	Critical Analysis [CA], Inquiry & Analysis [IA], Problem
	Solving [PS]
3	Foundational Skills
	Information Management [IM], Quantitative Lit,/Reasoning
	[QTR]
4	Social Responsibility
	Ethical Reasoning [ER], Global Learning [GL],
	Intercultural Knowledge [IK], Teamwork [T]
5	Industry, Professional, Discipline Specific Knowledge and
	Skills

*Include program objectives if applicable. Please consult with Program Coordinator

J. <u>APPLIED LEARNING COMPONENT:</u>

Yes 🛛 No 🗌

If YES, select one or more of the following categories:

Classroom/LabCivic EngagementInternshipCreative Works/Senior ProjectClinical PlacementResearchPracticumEntrepreneurshipService Learning(program, class, project)Community ServiceCommunity Service

K. <u>TEXTS</u>:

Cengel, Yunus A. and Cimbala, John M., Fluid Mechanics 3e, McGraw-Hill 2014., ISBN: 9780073380322.

Or

Mott, R. Applied Fluid Mechanics (7th Edition). New York: Prentice Hall, 2014.

L. <u>REFERENCES</u>:

N/A

M. <u>EQUIPMENT</u>: None \boxtimes Needed:

N. **<u>GRADING METHOD</u>**: A-F

O. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

Homework	25%
Exams (3)	60%
Final Exam / Project	15%

P. <u>DETAILED COURSE OUTLINE</u>:

I. Intro to Fluid Mechanics A. Fluid as a liquid or gas B. Power vs. Transportation systems C. Pascal's, Bernoulli's law (introduced) II. Properties of Fluids A. Weight, Density, and Specific Gravity B. Force, Pressure, and Head C. Pascal's Law D. Bulk Modulus E. Viscosity III. Energy and Forces A. Review Mechanics **B.** Pressures in liquids at rest

C. Atmospheric Pressure

D. Manometers

E. Forces on plane surfaces

F. Forces on inclined surfaces

G. Buoyancy

H. Bernoulli's Equations applications

IV. Sizing pipes and ducts

A. Flow Rate

B. Laminar flow and Turbulent flow

C. Losses due to valves and fittings

D. Compressible and Incompressible Flow

V. Pump Sizing

A. Pumps

B. Motors

C. Horsepower and Efficiency

D. Sizing Hydraulic Cylinders

VI. Air Handling Systems

A. Sizing Fans

B. Velocity and Pressure Measurement

Q. <u>LABORATORY OUTLINE</u>: None X Yes