STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME MECH 343 – Heat Transfer

Created by: Dr. Lucas Craig

Updated by:

Canino School of Engineering Technology !

Department: MET

Semester/Year: Spring 2019

A. <u>TITLE</u>: Heat Transfer

B. <u>COURSE NUMBER</u>: MECH 343

C. <u>CREDIT HOURS</u>: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 3 # Lecture Hours: 3 per week # Lab Hours: per week Other: per week

Course Length: 15 Weeks

D. WRITING INTENSIVE COURSE: Yes No 🛛

E. <u>GER CATEGORY</u>: None: Yes: GER *If course satisfies more than one*: GER

F. <u>SEMESTER(S) OFFERED</u>: Fall Spring Kall & Spring

G. <u>COURSE DESCRIPTION</u>:

This course explores the various methods of transferring heat from a source to a sink in engineering systems. Topics will focus on the energy balance of a system. The transport phenomena of heat transfer will be studied in detail, allowing students to internalize these physical principles of conduction, convection, and radiation.

H. <u>**PRE-REQUISITES</u>**: None \boxtimes Yes \boxtimes If yes, list below:</u>

MATH 364

<u>CO-REQUISITES</u>: None Yes If yes, list below:

I. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

<u>Course Student Learning Outcome</u> [SLO]	<u>Program Student Learning</u> <u>Outcome</u> [PSLO]	<u>GER</u> [If Applicable]	ISLO & SUBSET	<u>`S</u>
Define the transport methods of convection, conduction, and radiation.	2,6		2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Calculate the energy flow in combined transfer of conduction, convection, and radiation.	2, 6		2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Calculate the coefficient of convection during laminar, turbulent, and separated flow.	2,6		2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Evaluate radiation from a blackbody, gray surface, and diffuse surface.	2, 6		2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
			ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
			ISLO ISLO ISLO	Subsets Subsets Subsets Subsets

	ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
	ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
	ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
	ISLO ISLO ISLO	Subsets Subsets Subsets Subsets

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]		
ISLO	ISLO & Subsets		
#			
1	Communication Skills		
	Oral [O], Written [W]		
2	Critical Thinking		
	Critical Analysis [CA], Inquiry & Analysis [IA], Problem		
	Solving [PS]		
3	Foundational Skills		
	Information Management [IM], Quantitative Lit,/Reasoning		
	[QTR]		
4	Social Responsibility		
	Ethical Reasoning [ER], Global Learning [GL],		
	Intercultural Knowledge [IK], Teamwork [T]		
5	Industry, Professional, Discipline Specific Knowledge and		
	Skills		

*Include program objectives if applicable. Please consult with Program Coordinator

J. <u>APPLIED LEARNING COMPONENT:</u>

Yes 🛛 No 🗌

If YES, select one or more of the following categories:

Classroom/LabCivic EngagementInternshipCreative Works/Senior ProjectClinical PlacementResearchPracticumEntrepreneurshipService Learning(program, class, project)Community ServiceCommunity Service

K. <u>TEXTS</u>:

Çengel, Y.A. & Ghajar, A.J., Heat and Mass Transfer: Fundamentals & Applications, 4th Edition, McGraw Hill, 2007.

L. <u>REFERENCES</u>:

N/A

- M. <u>EQUIPMENT</u>: None Needed:
- N. **<u>GRADING METHOD</u>**: A-F

0. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

Homework	25%
Exams (3)	60%
Final Exam / Project	15%

P. <u>DETAILED COURSE OUTLINE</u>:

- I. Introduction
- A. Origins of conduction, convection, radiation
- **B.** Conservation of energy
- C. Methodology for problem solving
- D. Overview of heat transfer applications
- E. Units and dimensions
- II. Conduction
- A. Thermal properties of materials
- **B.** Boundary and initial conditions
- C. One-dimensional steady state conduction
- 1. Plane walls
- 2. Radial systems
- 3. Thermal energy generation
- 4. Transfer from extended surfaces (fins)
- D. Two-dimensional steady state conduction
- 1. Graphical method

- 2. Finite-Difference equation
- 3. Nodal networks
- III. Transient Conduction
- A. Lumped Capacitance
- **B.** Spatial effects
- C. Semi-infinite solids
- D. Multi-dimensional effects
- IV. Convection
- A. Boundary Layers
- 1. Velocity dependant
- 2. Thermal dependant
- B. Laminar flow
- C. Turbulent flow
- D. Reynolds Analogy
- E. Dimensionless Parameters
- V. External flow
- A. Flat plate
- B. Cylinder in cross flow
- C. Banks of tubes in heat exchangers
- VI. Internal flow
- A. Flow conditions
- **B.** Friction factors of developed flow
- C. Newton's Law of Cooling
- D. Shell and tubes exchangers
- E. Cross and parallel flow heat exchangers
- VII. Free Convection
- A. Laminar flow
- **B.** Turbulent flow
- C. Vertical and inclined surfaces and channels
- D. Combined free and forced convection
- VIII. Boiling and Condensation
- A. Boiling of a pool
- B. Nucleate boiling
- C. Film boiling
- IX. Radiation
- A. Emission
- B. Irradiation
- C. Radiosity
- D. Blackbody radiation
- E. Absorption, reflection and transmission
- F. Kirchhoff's Law
- G. Gray surface
- H. Exchange between surfaces
- I. Radiation shielding

Q. <u>LABORATORY OUTLINE</u>: None X Yes