STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME MECH 351 – Design of Experiments

Created by: Daniel Miller

Updated by:

Canino School of Engineering Technology

Department: Mechanical & Energy Technologies

Semester/Year: Fall 2018

A. <u>TITLE</u>: Design of Experiments

B. <u>COURSE NUMBER</u>: MECH 351

C. <u>CREDIT HOURS</u>: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 3 # Lecture Hours: 3 per week # Lab Hours: per week Other: per week

Course Length: 15 Weeks

D. <u>WRITING INTENSIVE COURSE</u>: Yes \square No \boxtimes

E. <u>GER CATEGORY</u>: None: Yes: GER *If course satisfies more than one*: GER

F. <u>SEMESTER(S) OFFERED</u>: Fall Spring Fall & Spring

G. <u>COURSE DESCRIPTION</u>:

This course provides methodologies that engineers, technologists, and management personnel need to plan and conduct experiments to quantify cause and effects relationships in complex systems. Design of experiments test multiple factors at one time determining whether changes to products, processes, and systems are improvements. Students will perform simple comparative experiments isolating known sources of variation; while multiple level fractional designs will allow analysis of variance (ANOVA) to predict models of interactions that optimize a process.

H. <u>PRE-REQUISITES</u>: None Yes X If yes, list below:

>45 Earned Credits

<u>CO-REQUISITES</u>: None Yes If yes, list below:

I. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

<u>Course Student Learning Outcome</u> [SLO]	<u>Program Student Learning</u> <u>Outcome</u> [PSLO]	<u>GER</u> [If Applicable]	<u>ISLO & SUBSETS</u>	
1. Explain OFAT and apply statistics to isolate known sources of variation and question reliability of data			5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets
2. Calculate and interpret ANOVA			5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets
3. Formulate hypothesis, Ishikawa diagrams and plan experiments			2-Crit Think ISLO ISLO	Subsets Subsets Subsets Subsets
4. Design, collect and evalaute data and write report for full and fractional factorial experiments			1-Comm Skills ISLO ISLO	Subsets Subsets Subsets Subsets
5. Calculate and identify interactions and confounding patterns			5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets
6. Plan, collect data and give oral report for mixture experiments			1-Comm Skills ISLO ISLO	Subsets Subsets Subsets Subsets

ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
ISLO ISLO ISLO	Subsets Subsets Subsets Subsets

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]		
ISLO	ISLO & Subsets		
#			
1	Communication Skills		
	Oral [O], Written [W]		
2	Critical Thinking		
	Critical Analysis [CA], Inquiry & Analysis [IA], Problem		
	Solving [PS]		
3	Foundational Skills		
	Information Management [IM], Quantitative Lit,/Reasoning		
	[QTR]		
4	Social Responsibility		
	Ethical Reasoning [ER], Global Learning [GL],		
	Intercultural Knowledge [IK], Teamwork [T]		
5	Industry, Professional, Discipline Specific Knowledge and		
	Skills		

*Include program objectives if applicable. Please consult with Program Coordinator

J. <u>APPLIED LEARNING COMPONENT:</u>

Yes 🛛 No 🗌

If YES, select one or more of the following categories:

Classroom/LabCivic EngagementInternshipCreative Works/Senior ProjectClinical PlacementResearchPracticumEntrepreneurshipService Learning(program, class, project)Community ServiceCommunity Service

K. <u>TEXTS</u>:

Mark J. Anderson, Patrick J. Whitcomb. DOE Simplified: Practical Tools for Effective Experimentation, Productivity Press, 2015

L. REFERENCES:

Box, George, J., Hunter, Stuart, and Hunter, William, Statistics for Experimenters, 1978, John Wiley and Sons.

Cornell, John, Experiments with Mixtures, 2nd ed. 1990, John Wiley and Sons.

John, Peter, Statistical Design and Analysis of Experiments, 1969, Macmillan Company

Montgomery, Douglas, and Myers, Raymond, Response Surface Methodology, 1995, John Wiley and Sons.

Phillips, John, How to Think About Statistics, 2nd ed., 1982, W. H. Freeman. !

- M. <u>EQUIPMENT</u>: None Needed: Technology enhanced classroom
- N. **<u>GRADING METHOD</u>**: A-F

O. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

Tests, Homework, Project, Written Reports and Oral Presentations

P. <u>DETAILED COURSE OUTLINE</u>:

- I. Introduction to Design of Experiments A. Process improvement B. Descriptive statistics C. Confidence Intervals D. Model for improvement
- II. Simple Comparative Experiments

	A. F-tests
	B. Fair testing
	C. Blocking known variation
III.	Testing of Single Factors
	A. Principles for testing
	B. Two-level, one factorial design
	C. Plots and interpretation of interactions
	D. Modeling responses w/ predictive equations
IV.	Testing of Multiple Factors
	A. Principles for testing
	B. Two-level, multiple factorial design
	C. Plots and interpretation of interactions
	D. Modeling responses w/ predictive equations
V.	Response Transformation
	A. Mathematical transformations
	B. Choosing the right transformations
VI.	Fractional Factorials
	A. Examples of fractional factorials
	B. Potential confusion by aliasing
	C. Plackett-Burman design
	D. Taguchi design
	E. Irregular fractions
VII.	Minimal-run designs
	A. Resolution of minimal-runs
	B. Fold-over of resolution III designs
	C. Single factor fold-over
VIII.	General Factorial Designs
	A. Analyze un-replicated general factorials
	B. Optimizing response surface models
	C. Augmenting a central composite design
	D. Mixing designs

Q. <u>LABORATORY OUTLINE</u>: None X Yes