STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME MKTX 215 – Digital Fundamentals and Logic Design

Created by: Robert Jennings and Rashid Aidun, Ph.D.

Updated by: J. Miles Canino, Ph.D.

Canino School of Engineering Technology

Department: Mechatronics Engineering Technology

Semester/Year: Fall/2018

A. <u>TITLE</u>: Digtal Fundamentals and Logic Design

B. <u>COURSE NUMBER</u>: MKTX 215

C. <u>CREDIT HOURS</u>: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 3 # Lecture Hours: 3 per week # Lab Hours: per week Other: per week

Course Length: 15 Weeks

D. <u>WRITING INTENSIVE COURSE</u>: Yes \square No \boxtimes

E. <u>GER CATEGORY</u>: None: Yes: GER *If course satisfies more than one*: GER

F. <u>SEMESTER(S) OFFERED</u>: Fall Spring Fall & Spring

G. <u>COURSE DESCRIPTION</u>:

The topics covered in this course are: number systems, logic operations and codes, logic gates, Boolean algebra and logic simplification, combinational logic analysis, functions of combinational logic, latches, flip-flops, counters and shift registers. Digital to Analog and Analog to Digital converters and Semiconductor memories are also covered.

H. <u>PRE-REQUISITES</u>: None Yes If yes, list below:

CITA 152 Computer Logic and ENGS 102, and PHYS 132/136

<u>CO-REQUISITES</u>: None Yes If yes, list below:

I. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

<u>Course Student Learning Outcome</u> [SLO]	Program Student Learning Outcome [PSLO]	<u>GER</u> [If Applicable]	<u>ISLO & SUBSETS</u>	
Perform number systems conversion	a, k		2-Crit Think 5-Ind, Prof, Disc, Know Skills ISLO	CA IA PS Subsets
Provide the simplest expression for the output using Karnaugh mapping with the "Can't Happen" conditions	a, k		2-Crit Think 5-Ind, Prof, Disc, Know Skills ISLO	CA IA PS Subsets
Design and analyze a syncrhonous Up/Down digital counter	a, c, k		2-Crit Think 5-Ind, Prof, Disc, Know Skills ISLO	CA IA PS Subsets
Describe the internal operations of a successive-approximation type of analog to digital converter	a, k		2-Crit Think 5-Ind, Prof, Disc, Know Skills 1-Comm Skills	CA PS IA W

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]			
ISLO	ISLO & Subsets			
#				
1	Communication Skills			
	Oral [O], Written [W]			
2	Critical Thinking			
	Critical Analysis [CA], Inquiry & Analysis [IA], Problem			
	Solving [PS]			
3	Foundational Skills			
	Information Management [IM], Quantitative Lit,/Reasoning			
	[QTR]			
4	Social Responsibility			
	Ethical Reasoning [ER], Global Learning [GL],			
	Intercultural Knowledge [IK], Teamwork [T]			
5	Industry, Professional, Discipline Specific Knowledge and			
	Skills			

J. <u>APPLIED LEARNING COMPONENT:</u>

Yes	\square	No	
		1.0	

If YES, select one or more of the following categories:

Classroom/LabCivic EngagementInternshipCreative Works/Senior ProjectClinical PlacementResearchPracticumEntrepreneurshipService Learning(program, class, project)Community ServiceCommunity Service

K. <u>TEXTS</u>:

Digital Electronics: Principles & Applications, 8th Ed., McGraw-Hill, 2013, ISBN: 9780073373775

L. <u>REFERENCES</u>:

N/A

M. <u>EQUIPMENT</u>: None Needed:

N. <u>GRADING METHOD</u>: A-F

0. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

- Tests, Quizzes
- Design Projects
- Homework

P. <u>DETAILED COURSE OUTLINE</u>:

- 1. Number Systems, Operations, and Codes
- 2. Logic Gates
- 3. Boolean Algebra and Logic Simplification
- 4. Combination Logic Analysis
- 5. Functions of Combinational Logic
- 6. Latches and Flip-Flops
- 7. Counters
- 8. Solid State Memories
- 9. Digital to Analog Converters
- 10. Analog to Digital Converters

Q. <u>LABORATORY OUTLINE</u>: None X Yes