STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME MKTX 216/ELEC 166 – Digital Fundamentals & Systems Lab

Created by: Robert Jennings and Rashid Aidun, Ph.D.

Updated by: Dr. Craig

Canino School of Engineering Technology

Department: Mechatronics Engineering Technology

Semester/Year: Spring 2021

A. <u>TITLE</u>: Digital Fundamentals and Systems Lab

B. COURSE NUMBER: MKTX 216/ELEC 166

C. <u>CREDIT HOURS</u>: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 1
Lecture Hours: per week
Lab Hours: 2 per week
Other: per week

Course Length: 15 Weeks

D. <u>WRITING INTENSIVE COURSE</u>: Yes \square No \boxtimes

E. <u>GER CATEGORY</u>: None: Yes: GER *If course satisfies more than one*: GER

F. <u>SEMESTER(S) OFFERED</u>: Fall Spring Fall & Spring

G. <u>COURSE DESCRIPTION</u>:

This laboratory course emphasizes on topics such as: Adder/Subtraction Circuits, Code Converters, Multiplexers and De-Multiplexers, JK Flip-Flop Circuits, Counters, Timers, Memory devices, Analog to Digital and Digital to Analog Converters, and Digital Circuit Troubleshooting.

H. <u>**PRE-REQUISITES</u>**: None \boxtimes Yes \square If yes, list below:</u>

<u>**CO-REQUISITES:**</u> None \Box Yes \boxtimes If yes, list below:

MKTX 215 or ELEC 165

I. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

<u>Course Student Learning Outcome</u> [SLO]	Program Student Learning Outcome [PSLO]	<u>GER</u> [If Applicable]	<u>ISLO & SUBSETS</u>	
Construct and evaluate logic circuits using Tri-State buffers and inverters circuits.	a, b, k		2-Crit Think 5-Ind, Prof, Disc, Know Skills ISLO	CA IA PS Subsets
Design, construct, & evaluate a Digital Electronic Switch circuit.	a, b, c, k		5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets
Design, Construct, & evaluate a three bit decoder circuit for a seven segment LED (LCD) readout.	a, b, c, k		2-Crit Think 5-Ind, Prof, Disc, Know Skills ISLO	CA IA PS Subsets
Design, Construct, & evaluate a two decade BCD counter circuit using seven-segment LED (LCD) readout	a, b, c, k		2-Crit Think 5-Ind, Prof, Disc, Know Skills ISLO	CA IA PS Subsets

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]		
ISLO	ISLO & Subsets		
#			
1	Communication Skills		
	Oral [O], Written [W]		
2	Critical Thinking		
	Critical Analysis [CA], Inquiry & Analysis [IA], Problem		
	Solving [PS]		
3	Foundational Skills		
	Information Management [IM], Quantitative Lit,/Reasoning		
	[QTR]		
4	Social Responsibility		
	Ethical Reasoning [ER], Global Learning [GL],		
	Intercultural Knowledge [IK], Teamwork [T]		
5	Industry, Professional, Discipline Specific Knowledge and		
	Skills		

APPLIED LEARNING COMPONENT: J.

Yes 🖂 No

If YES, select one or more of the following categories:

- Classroom/Lab
- Internship
- Clinical Placement
- Practicum
- Service Learning
 Community Service
- Civic Engagement Creative Works/Senior Project
- Research
- Entrepreneurship
 - (program, class, project)

K. <u>TEXTS</u>:

Laboratory manual covering the experiments listed below.

L. <u>REFERENCES</u>:

N/A

M. <u>EQUIPMENT</u>: None Needed: Students are required to purchase laboratory components.

N. **<u>GRADING METHOD</u>**: A-F

O. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

- Tests, Quizzes
- Design Projects
- Homework

P. <u>DETAILED COURSE OUTLINE</u>:

See Laboratory Outline

Q. <u>LABORATORY OUTLINE</u>: None Yes

- 1. Number Systems, Operations, and Codes
- 2. Binary Coded Decimal (BCD) code
- 3. Logic Gates
- 4. Boolean Algebra and Logic Simplification
- 5. Combination Logic Analysis
- 6. Functions of Combinational Logic
- 7. Multiplexers and De-multiplexers
- 8. Latches and Flip-Flops
- 9. Counters
- 10. Solid State Memories
- **11.** Digital to Analog Converters
- **12.** Analog to Digital Converters