STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME MSPT 110 - Engine and Power Transmission Service

Created by: Mark R. Hill

Updated by: Christopher Mayville

Canino School of Engineering Technology

Department: Mechanical & Energy Technologies

Semester/Year: Fall 2018

A. <u>TITLE</u>: Engine and Power Transmission Service

B. COURSE NUMBER: MSPT 110

C. <u>CREDIT HOURS</u>: 4 credit hour(s) per week for 15 weeks

One hour (50 minutes) of lecture per week Twice

 $\overline{\boxtimes}$ Two to three hours of lab or clinical per week This is a four hour two credit lab.

Two hours of recitation per week

40 hours of internship

D. WRITING INTENSIVE COURSE: Yes 🗌 No 🔀

E. <u>GER CATEGORY</u>: None: Yes: GER *If course satisfies more than one*: GER

F. <u>SEMESTER(S) OFFERED</u>: Fall Spring Kall & Spring

G. <u>COURSE DESCRIPTION</u>:

This course involves the complete disassembly, inspection, repair and reassembly of modern modular constructed powertrain assemblies. The principles of operations key to high performance, compact engines/transmission assemblies are thoroughly covered.

H. <u>PRE-REQUISITES</u>: None Yes X If yes, list below:

MSPT 101-Powersports Service, or with permission of instructor

<u>CO-REQUISITES</u>: None Yes If yes, list below:

I. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

<u>Course Student Learning Outcome</u> [SLO]	<u>Program Student Learning</u> <u>Outcome</u> [PSLO]	<u>GER</u> [If Applicable]	<u>ISLO & SUBSE</u>	<u>TTS</u>
a. Perform precision measurements key to engine overhaul	MSPT SO 2 MSPT SO 4		ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
b. Identify various engine design configurations	MSPT SO 2		ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
c. Diagnose and repair modular constructed powertrain assembly problems	MSPT S0 2		ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
d. Calculate gear ratios related to modular powertrain assemblies	MSPT SO 4		ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
f. Practice fundamentals associated with engine blueprinting			ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
			ISLO ISLO ISLO	Subsets Subsets Subsets Subsets

ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
ISLO ISLO ISLO	Subsets Subsets Subsets Subsets
ISLO ISLO ISLO	Subsets Subsets Subsets Subsets

.

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]	
ISLO	ISLO & Subsets	
#		
1	Communication Skills	
	Oral [O], Written [W]	
2	Critical Thinking	
	Critical Analysis [CA] , Inquiry & Analysis [IA] , Problem	
	Solving [PS]	
3	Foundational Skills	
	Information Management [IM], Quantitative Lit,/Reasoning	
	[QTR]	
4	Social Responsibility	
	Ethical Reasoning [ER], Global Learning [GL],	
	Intercultural Knowledge [IK], Teamwork [T]	
5	Industry, Professional, Discipline Specific Knowledge and	
	Skills	

,

*Include program objectives if applicable. Please consult with Program Coordinator

J. <u>APPLIED LEARNING COMPONENT:</u>

Yes 🛛 No 🗌

If YES, select one or more of the following categories:

Classroom/LabCivic EngagementInternshipCreative Works/Senior ProjectClinical PlacementResearchPracticumEntrepreneurshipService Learning(program, class, project)Community ServiceCommunity Service

K. <u>TEXTS</u>:

Modern Motorcycle Technology, Third Edition by Edward Abdo, Cengage Learning

Automotive Engines Theory and Servicing, Ninth Edition, by James D. Halderman, Pearson

L. <u>REFERENCES</u>:

Manufacturer specific service manuals

M. EQUIPMENT: None Needed: Standard powersports laboratory equipment

N. **<u>GRADING METHOD</u>**: A-F

0. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

Quizzes, exams, homework, laboratory reports, and laboratory participation

P. <u>DETAILED COURSE OUTLINE</u>:

- I. Introduction
- 1. Class procedures and policies
- 2. Opening discussion
- II. Engines
- 1. Four stroke engines
- 2. Cam shaft arrangement
- III. Valve train assemblies
- 1. Pneumatic opening
- 2. Desmodromic
- 3. Coil springs
- IV. Engine case design
- 1. Unit construction
- 2. Non-unit construction
- 3. Vertical/horizontal split crank cases

- 4. One-piece case (trap door case)
- V. Pistons, crankshafts and cylinders
- 1. Single cylinder engines
- 2. Multi-cylinder engines
- 3. Cylinder design and construction
- 4. Cylinder head design
- 5. Piston construction
- 6. Piston ring grooves
- 7. Four cycle engine bearings
- VI. Two stroke engine designs
- 1. Intake timing
- 2. Piston port
- 3. Reed valve
- 4. Rotary valve
- 5. Piston port/crank case reed
- VII. Transfer and exhaust timing
- 1. Exhaust system design
- 2. Scavenging process
- VIII. Crank case sealing
- 1. Timing side
- 2. Wet side
- 3. Pressure test
- 4. Vacuum test
- IX. Crank shaft configurations
- 1. Single cylinder crankshafts
- 2. Twin cylinder crankshafts
- 3. Multi cylinder crankshafts
- X. Power transmissions
- 1. Gear action
- 2. Primary drives
- 3. Clutching
- 4. Transmission/final drives
- 5. Internal gear changing mechanisms
- 6. Final drive systems
- 7. Calculating ratios

Q. <u>LABORATORY OUTLINE</u>: None Yes X

- I. Introduction
- A. Laboratory procedures and policies
- **B.** Basic laboratory introduction
- **II.** Four Stroke Engines
- A. Disassembly and inspection
- B. Measurement

- **C**. Comparison to spec.
- Reassembly D.
- Valve Train Assembly Maintenance III.

.

- IV.
- Two Stroke Engines Disassembly and inspection **A.**
- Measurement **B**.
- Comparison to spec. **C**.
- Reassembly D.
- Cylinder Reconditioning Cylinder boring Honing V.
- А.
- В.
- **Crankshaft Rebuilding** VI.
- Single cylinders/multi-cylinders А.