STATE UNIVERSITY OF NEW YORK ! COLLEGE OF TECHNOLOGY ! CANTON, NEW YORK !

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME PHYS 126 - PHYSICS LABORATARY II

Created by: Feng Hong

Updated by: Feng Hong

Canino School of Engineering Technology !

Department: PHYSICS !

Semester/Year: FALL/2018 !

A. <u>TITLE</u>: Physics Laboratory II

B. <u>COURSE NUMBER</u>: PHYS 126

C. <u>CREDIT HOURS</u>: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 1 !
Lecture Hours: per week !
Lab Hours: 2 per week !
Other: per week

Course Length: 15 Weeks

D. <u>WRITING INTENSIVE COURSE</u>: Yes \square No \square

E. <u>GER CATEGORY</u>: None: Yes: GER 2 Natural Sciences ! *If course satisfies more than one*: GER !

F. <u>SEMESTER(S) OFFERED</u>: Fall Spring Kall & Spring

G. <u>COURSE DESCRIPTION</u>:

This is a laboratory course to accompany College Physics 2, PHYS122. Experiments examine electricity, DC circuits, and optics.

H. <u>PRE-REQUISITES</u>: None Yes If yes, list below:

PHYS 122, College Physics II or permission of instructor

<u>CO-REQUISITES</u>: None Yes X If yes, list below:

PHYS 122, College Physics II

I. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

<u>Course Student Learning Outcome</u> [SLO]	Program Student Learning Outcome [PSLO]	<u>GER</u> [If Applicable]	<u>ISLO & SUBSETS</u>	
a. Understanding of the methods scientists use to explore natural phenomena, including observation, hypothesis development, measurement, and data collection, experimentation, evaluation of evidence, and employment of mathematical analysis	N/A	Understanding of the methods scientists use to explore natural phenomena, including observation, hypothesis development, measurement and data collection, experimentation, evaluation of evidence, and employment of mathematical analysis	2-Crit Think 4-Soc Respons	W CA T Subsets
b. Application of scientific data, concepts, and models in physics	N/A	Application of scientific data, concepts, and models in one of the natural sciences	2-Crit Think ISLO	W PS Subsets Subsets
c. Use computer assisted data collection and analysis.	N/A	Application of scientific data, concepts, and models in one of the natural sciences	2-Crit Think ISLO	W PS Subsets Subsets
			ISLO ISLO	Subsets Subsets Subsets Subsets
			ISLO ISLO	Subsets Subsets Subsets Subsets

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]
ISLO #	ISLO & Subsets
1	Communication Skills Oral [O], Written [W]
2	Critical Thinking Critical Analysis [CA], Inquiry & Analysis [IA], Problem Solving [PS]
3	Foundational Skills Information Management [IM], Quantitative Lit,/Reasoning [QTR]
4	Social Responsibility <i>Ethical Reasoning [ER], Global Learning [GL],</i>

			I. I	
		Intercultural Knowledge [IK], Teamwork [T]		
	5	Industry, Professional, Discipline Specific Knowledge and		
		Skills		
*Include program objectives if applicable. Please consult with Program Coordinator				

J. <u>APPLIED LEARNING COMPONENT:</u>

Yes	\square	No	
1 00	V V	1,0	

If YES, select one or more of the following categories: !

Classroom/Lab !
Internship
Clinical Placement
Practicum
Service Learning
Community Service
Clinical Placement
Research
Entrepreneurship
(program, class, project)

K. <u>TEXTS</u>:

N/A

L. <u>REFERENCES</u>:

Douglas C. Giancoli. Physics curriculum: Physics Principles with Applications. Upper Saddle River, NJ: Pearson Education.

M. <u>EQUIPMENT</u>: None Needed: Existing physics laboratory equipment will be used.

N. **<u>GRADING METHOD</u>**: A-F

O. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

- Lab reports
- Projects
- Participation

P. <u>DETAILED COURSE OUTLINE</u>:

N/A

Q. <u>LABORATORY OUTLINE</u>: None Yes

1. Ohm's Law: The current voltage characteristic will be obtained for different kinds of devices.

2.Resistivity: The geometric and physical properties of electrical conduction will be found by exploring the IV properties of different conducting wires.

3.Thermal coefficient of resistivity: The resistance of conductors and semi-conducting diodes as a function of temperature will be compared to predictions of the band theory.

4.Oscilloscope: Oscilloscopes will be used to measure voltage, frequency, half peak width and phase

shifts.

5. Terminal voltage: The IV power curve will be obtained for the output of a power source with a large internal resistance.

6.Potentiometer: The characteristics of a voltage divider will be examined. The divider will then be converted into a potentiometer to measure the electric potential of a fruit cell.

7.Capacitance: Time constants will be used to measure the capacitance of series and parallel connected capacitors.

8.RC circuits: Measure the charging and discharging behavior of a resistor capacitor circuit.

10.Reflection & Refraction: Rays will be traced for a plane mirror, a cylindrical mirror and a glass rectangular solid.

11. Lenses: Images and object positions are located on an optical bench and used to find the focal lengths of different optical lenses.

12. Diffraction: Diffraction gratings will be used to find the wavelength of spectral lines from gaseous discharge tubes.