STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

PHYS 136 – UNIVERSITY PHYSICS LABORATORY II CIP Code: 40.0801

Created by: Dr. Feng Hong

Updated by: Dr. Lawretta Ononye

Canino School of Engineering Technology

Physics

Fall 2023

A. TITLE: University Physics Laboratory II

B. COURSE NUMBER: PHYS 136

C. **CREDIT HOURS:** (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 1 **# Lecture Hours: per week # Lab Hours:** 2 per week **Other:** per week

Course Length: 15 Weeks

D. WRITING INTENSIVE COURSE: Yes

- E. **GER CATEGORY:** GER 2 Natural Sciences Does course satisfy more than one GER category? If so, which one?
- F. **SEMESTER(S) OFFERED:** (Fall, Spring, or Fall and Spring) Spring

G. **COURSE DESCRIPTION:**

This is a laboratory course to accompany University Physics II (PHYS132). Experiments examine electricity, circuits, resistivity, capacitance and magnitism.

H. **PRE-REQUISITES:**

PHYS 135, University Physics Laboratory I or Permission of instructor

CO-REQUISITES:

PHYS 132, University Physics II or permission of instructor

I. STUDENT LEARNING OUTCOMES:

<u>Course Student Learning</u> <u>Outcome [SLO]</u>	<u>PSLO</u>	GER	<u>ISLO</u>
a. Understanding of the methods scientists use to explore natural phenomena, including observation, hypothesis development, measurement, and data collection, experimentation, evaluation of evidence, and employment of mathematical analysis	N/A	Understanding of the methods scientists use to explore natural phenomena, including observation, hypothesis development, measurement and data collection, experimentation, evaluation of evidence, and employment of mathematical analysis	1-Comm Skills 2-Crit Think 4-Soc Respons
b. Application of scientific data, concepts, and models in physics	N/A	Application of scientific data, concepts, and models in one of the natural sciences	1-Comm Skills 2-Crit Think

c. Use computer assisted collection and analysis.	l data		N/A	Application of scientific data, concepts, and models in one of the natural sciences	1-Comm Skills 2-Crit Think
	KEY		Institutional Student		
	ISLO #		ISLO & S		
	1	Co	mmunication Skills		
		Ora	ll [O], Written [W]	_	
	2	Cri	tical Thinking		
		Cri	tical Analysis [CA], Ing		
		Pro	blem Solving [PS]	4	
	3	Fou	indational Skills		
		Infe	ormation Management [
	4	Lit,	Keasoning [QIK]		
	4	500 Ed	tial Responsibility		
			icai Keasoning [EK], G		
	5	Inte	ercultural Knowleage [1]	-1	
	5		iusiry, Protessional, Di		
		кŋ	owieuge and Skills		

J. <u>APPLIED LEARNING COMPONENT:</u>

Yes	\square	No	
IUS		110	

If YES, select one or more of the following categories:

Classroom/LabCivic EngagementInternshipCreative Works/Senior ProjectClinical PlacementResearchPracticumEntrepreneurshipService Learning(program, class, project)Community ServiceCommunity Service

K. <u>**TEXTS**</u>: N/A

L. <u>REFERENCES</u>:

Raymond A. Serway and John W. Jewett (2011). Physics for Scientists and Engineers,9th Edition. Belmont, CA: Brooks/Cole.

M. <u>EQUIPMENT</u>:Existing physics laboratory equipment will be used.

N. <u>GRADING METHOD</u>: A-F

O. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

- Lab reports
- Projects
- Participation

P. <u>DETAILED COURSE OUTLINE</u>: N/A

Q. <u>LABORATORY OUTLINE</u>:

- 1. Ohm's Law The current voltage characteristic will be obtained for different kinds of devices.
- 2. Resistivity The geometric and physical properties of electrical conduction will be found by exploring the IV properties of different conducting wires.
- 3. Thermal coefficient of resistivity The resistance of conductors and semi-conducting diodes as a function of temperature will be compared to predictions of the band theory.
- 4. Oscilloscope Oscilloscopes will be used to measure voltage, frequency, half peak width and phase shifts.
- 5. Terminal voltage The IV power curve will be obtained for the output of a power source with a large

internal resistance.

6. Potentiometer

The characteristics of a voltage divider will be examined. The divider will then be converted into a potentiometer to measure the electric potential of a fruit cell.

7. Capacitance

Time constants will be used to measure the capacitance of series and parallel connected capacitors.

- 8. Self Inductance (2 week lab) The self inductance of a coil will be determined using an LC circuit. The result will be compared to theoretical calculations.
- 9. RLC circuits Impedance of an RLC circuit is examined as a function of frequency. Resonant conditions are identified.
- 10. Optics Reflection & Refraction Lenses and Diffraction