STATE UNIVERSITY OF NEW YORK ! COLLEGE OF TECHNOLOGY ! CANTON, NEW YORK !

MASTER SYLLABUS

COURSE NUMBER – COURSE NAME PHYS 202 – Modern Physics

Created by: Dr. Lawretta Ononye

Updated by: Dr. Lawretta Ononye

Canino School of Engineering Technology !

Department: Physics !

Semester/Year: Fall 2018 !

A. <u>TITLE</u>: Modern Physics

B. <u>COURSE NUMBER</u>: PHYS 202

C. <u>CREDIT HOURS</u>: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Credit Hours: 3 ! # Lecture Hours: 3 per week ! # Lab Hours: per week ! Other: per week

Course Length: 15 Weeks

D. <u>WRITING INTENSIVE COURSE</u>: Yes \square No \boxtimes

E. <u>GER CATEGORY</u>: None: Yes: GER ! *If course satisfies more than one*: GER !

F. <u>SEMESTER(S) OFFERED</u>: Fall Spring Fall & Spring

G. <u>COURSE DESCRIPTION</u>:

The atomic view of matter, relativity, special relativity, and introduction to quantum mechanics.

H. <u>PRE-REQUISITES</u>: None Yes X If yes, list below:

PHYS 132 (University Physics II) or PHYS 122 (College Physics II) or permission of instructor

<u>CO-REQUISITES</u>: None Yes If yes, list below:

None

I. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

Course Student Learning Outcome [SLO]	<u>Program Student Learning</u> <u>Outcome</u> [PSLO]	<u>GER</u> [If Applicable]	<u>ISLO & SUBSETS</u>	
a. Solve motion problems using the special theory of relativity.			2-Crit Think ISLO ISLO	PS CA Subsets Subsets
b. Calculate relativistic energy and momentum.			2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
c. Appraise the quantum mechanical view of physics as compare to classical mechanics.			2-Crit Think ISLO ISLO	CA Subsets Subsets Subsets
d. Explain the basic tenets of quantum theory and calculate solution to quantum mechanical problems using Schrodinger's equation.			2-Crit Think ISLO ISLO	PS CA Subsets Subsets
d. Demonstrate an understanding of physics application of scientific data, concepts and models.			2-Crit Think ISLO ISLO	CA PS Subsets Subsets

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]
ISLO #	ISLO & Subsets
1	Communication Skills Oral [O], Written [W]
2	Critical Thinking <i>Critical Analysis [CA] , Inquiry & Analysis [IA] , Problem</i> <i>Solving [PS]</i>
3	Foundational Skills Information Management [IM], Quantitative Lit,/Reasoning [QTR]
4	Social Responsibility <i>Ethical Reasoning [ER], Global Learning [GL],</i> <i>Intercultural Knowledge [IK], Teamwork [T]</i>
5	Industry, Professional, Discipline Specific Knowledge and Skills

*Include program objectives if applicable. Please consult with Program Coordinator !

J. <u>APPLIED LEARNING COMPONENT:</u>

Yes	\square	No	
1 00	VV	110	

If YES, select one or more of the following categories:

Classroom/LabCivic EngagementInternshipCreative Works/Senior ProjectClinical PlacementResearchPracticumEntrepreneurshipService Learning(program, class, project)Community ServiceCommunity Service

K. <u>TEXTS</u>:

Serway/Moses/Moyer (3rd Edition). Modern Physics. Belmont, CA: Brooks/Cole Publishing.

L. <u>REFERENCES</u>:

None

M. <u>EQUIPMENT</u>: None Needed: Technology enhanced classroom

N. **<u>GRADING METHOD</u>**: A-F

O. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

• Exams • Quizzes • Homework • Participation • Project

P. <u>DETAILED COURSE OUTLINE</u>:

- I. Review of Classical Physics
- A. Forces
- **B.** Momentum
- C. Work-energy
- **D.** Field forces
- E. Electric and magnetic fields
- F. Waves
- II. Special Theory of Relativity
- A. Invariance of the speed of light in inertia frames
- **B.** Length contraction
- C. Time dilation
- **D.** Doppler shift
- E. Relative velocities
- F. Mass and energy equivalence

III. Particle Nature of Waves

- A. Photo electric effect
- **B. Black body radiation**
- C. Compton effect.

D. Bremsstrahlung

- IV. Wave Nature of Particles
- A. DeBye waves
- **B.** Electron diffraction
- C. Neutron diffraction

V. Quantum Mechanics

- A. Quantum theory.
- **B.** Schrodinger equation
- C. Step function
- D. One, two, and three -dimensional wells
- E. Simple oscillator

VI. The Hydrogen Atom

- A. Hydrogen spectrum.
- B. Bohr model.
- C. Schrodinger's equation for Hydrogen –Separation of variables
- D. Eigen values for hydrogen
- E. Pauli's exclusion principle
- F. Selection rules

VII. Statistical Mechanics

- A. Statistical methods.
- **B.** Boltzmann distributions
- C. Bose-Einstein distribution
- **D.** Fermi-Dirac distribution

VIII. Solid State

- A. Types of bonding
- **B.** Periodic structure of crystals
- C. Free electron theory
- **D.** Bond theory
- E. Semi-conducting diodes and transistors

IX. Nuclear Physics A. Nuclear structure

- **B.** Radioactivity
- C. Fusion and fission
- **D.** Chain reactions

Q. <u>LABORATORY OUTLINE</u>: None X Yes

N/A