STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS

SOET 377 – Engineering Ethics

CIP Code: 15.0303

Created by: Dr. Stephen Frempong

SCHOOL OF ENGINEERING TECHNOLOGY ELECTRICAL ENGINEERING TECHNOLOGY & ENGINEERING SCIENCE DEPARTMENT FALL 2025 A. <u>TITLE</u>: Engineering Ethics

B. COURSE NUMBER: SOET 377

C. <u>CREDIT HOURS</u>: (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)

Number of Credit Hours per Week	3
Number of Lecture Hours per Week	3
Number of Lab Hours per Week	0
Other per Week	0

D. WRITING INTENSIVE COURSE: Yes

Yes	Yes
No	

E. GER CATEGORY: NONE

Does course satisfy a GER category or categories? If so, please select all that apply.

[1-2] Communication	
[3] Diversity: Equity, Inclusion & Social Justice	
[4] Mathematics & Quantitative Reasoning	
[5] Natural Science & Scientific Reasoning	
[6] Humanities	
[7] Social Sciences	
[8] Arts	
[9] US History & Civic Engagement	
[10] World History & Global Awareness	
[11] World Languages	

F. <u>SEMESTER(S) OFFERED</u>: SPRING/FALL

G. <u>COURSE DESCRIPTION:</u> This course extends the student analytical skills to moral deliberation. Topics covered include engineering code of ethics, responsibility in engineering, the social and value dimensions of technology, trust and reliability, engineers in organizations, engineers and environment, international engineering professionalism, global issues, respect for diversity, and cases.

H. <u>PRE-REQUISITES</u>: Junior level status or permission of instructor.

CO-REQUISITES: NONE

I. STUDENT LEARNING OUTCOMES

Course Student Learning Outcomes (SLO)	ABET-Student Outcomes (1-5) / Program Student Learning Outcome (PSLO)	GER	ISLO's & Subsets	
Conduct Research Paper in Engineering Code of Ethics related to student field of study in United States, and compare to similar profession in another country, and do PowerPoint presentation.	(3) An ability to apply written, oral, and graphical communication in both technical and non-technical environments; and an ability to identify and use appropriate technical literature.	None	1. Communication Critical Thinking	
Research Engineering Ethics cases in other countries.	(3) An ability to apply written, oral, and graphical communication in both technical and non-technical environments; and an ability to identify and use appropriate technical literature.		5. Industry, Professional, Discipline- Specific Knowledge and Skills	
Analyze cases to address professional and ethical responsibilities including a respect for diversity.	(3) An ability to apply written, oral, and graphical communication in both technical and non-technical environments; and an ability to identify and use appropriate technical literature.		 Critical Thinking Social Responsibility 	
Understand the knowledge of the impact of engineering technology solutions in a societal and global context.	(3) An ability to apply written, oral, and graphical communication in both technical and non-technical environments; and an ability to identify and use appropriate technical literature.		4. Social Responsibility	

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]
	· · · · · · · · · · · · · · · · · · ·
ISLO	ISLO & Subsets
#	
1	Communication Skills
	Oral [O], Written [W]
2	Critical Thinking
	Critical Analysis [CA], Inquiry & Analysis [IA],
	Problem Solving [PS]
3	Foundational Skills
	Information Management [IM], Quantitative
	Lit,/Reasoning [QTR]
4	Social Responsibility
	Ethical Reasoning [ER], Global Learning [GL],
	Intercultural Knowledge [IK], Teamwork [T]
5	Industry, Professional, Discipline Specific
	Knowledge and Skills

J. APPLIED LEARNING COMPONENT:

Yes	Yes
No	

If yes, select (X) one or more of the following categories:

Classroom / Lab	Х	Community Service	
Internship		Civic Engagement	
Clinical Practicum		Creative Works/Senior Project	
Practicum		Research	
Service Learning		Entrepreneurship [program, class, project]	

K. <u>TEXTS</u>:

Charles E. Harris, Jr., Michael S. Pritchard, and Michael J. Rabins, <u>Engineering Ethics - Concepts and Cases</u>, 6th Edition, 20 Channel Center St. Boston, MA 02210: Wadsworth Cengage Learning, 2018.

L. <u>REFERENCES:</u> NONE

M. EQUIPMENT: NONE

N. <u>GRADING METHOD</u>: A-F

O. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>: Research Paper, Case Studies, and PowerPoint Presentation.

P. <u>DETAILED COURSE OUTLINE</u>:

Why Professional Ethics

What is a Profession? Engineering and Professionalism Two Models of Professionalism Three Types of Ethics or Morality The Negative Face of Engineering Ethics The Positive Face of Engineering Ethics Responsibility in Engineering Engineering Standards The Standard of Care Responsible Oversight Blame-Responsibility and Causation Liability Design Standards

The Social and Value Dimensions of Technology

Technology is Socially Embedded Technology Affects Society Social Affects Technology Technology and Social Policy Technology and Public Policy Evaluating Technology Critical Attitude toward Technology

Trust and Reliability

Honesty Forms of Dishonesty Why is Dishonesty Wrong? Dishonesty on Campus Dishonesty in Research and Testing Confidentiality Intellectual Property Expert Witnessing Informing the Public Conflicts of Interest

Risk and Reliability in Engineering

The Engineer's Approach to Risk The Public's Approach to Risk Communicating Risk and Public Policy Difficulties in Determining the Causes and Likelihood of Harm The Engineer's Liability for Risk Becoming a Responsible Engineer Regarding Risk

Engineers in Organizations

Avoiding Blind Spots Autonomy and Authority Groupthink Engineers and Managers Proper Engineering and Management Decisions Responsible Organizational disobedience Disobedience by Protest Employee and Employer

Engineers and Environment

Environmental Imperatives in Engineering Codes and the Law The Environmental Challenge Responding to the Environmental Challenge Environmental Stewardship and Engineering Professionalism

Engineering in the Global Context

The Emergence of International Engineering Standards An International Concept of Engineering Professionalism Ethical Resources for Globalized Engineering Economic Underdevelopment: The Problem of Exploitation Paying for Special Treatment: The Problem of Bribery Paying for Deserved Services: The Problem of Extortion

Cases/Analysis

- Research Paper (10 pages)
- PowerPoint Presentation

Q. LABORATORY OUTLINE: NONE