STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS COURSE NUMBER – COURSE NAME WELD 102 – SMAW (Stick) and Gouging

Created by: C	nristopher N	⁄layville
---------------	--------------	-----------

Updated by:

Canino School of Engineering Technology
Department: Mechanical & Energy Technology
Semester/Year: Spring 2021

Α.	TITLE: SMAW (Stick) and Gouging
В.	COURSE NUMBER: WELD 102
c.	<u>CREDIT HOURS</u> : (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity)
	# Credit Hours: 4
	# Lecture Hours: 2 per week
	# Lab Hours: 4 per week
	Other: per week
	Course Length: 15 Weeks
D.	WRITING INTENSIVE COURSE: Yes No 🖂
E.	GER CATEGORY: None: Yes: GER If course satisfies more than one: GER
F.	SEMESTER(S) OFFERED: Fall Spring Fall & Spring
G.	COURSE DESCRIPTION:

apply	to each electrode, to include gouging.
н.	PRE-REQUISITES: None Yes If yes, list below:
	CO-REQUISITES: None ☑ Yes ☐ If yes, list below:

In this course, students learn about Shielded Metal Arc Welding with an overview and use of multiple electrode materials. All positions and procedures are taught and practiced as they

I. <u>STUDENT LEARNING OUTCOMES</u>: (see key below)

By the end of this course, the student will be able to:

Course Student Learning Outcome	Program Student		ISLO & SUBSETS	5
[SLO]	Learning Outcome [PSLO]	GER [If Applicable]		_
Identify how welding currents are applied based on weld parameters.	2		2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Explain how to correct various welding problems that might be encountered.	2		2-Crit Think ISLO ISLO	IA Subsets Subsets Subsets
Select the appropriate electrode according to requirements of a specific welding job.	2		2-Crit Think ISLO ISLO	PS Subsets Subsets Subsets
Successfully perform welds on butt joints, edge welds, outside comer joints, lap joints, tee joints, and fillet welds requiring multiple passes.	4		5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets
Successfully perform welds in the flat, horizontal, vertical, and overhead positions.	4		5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets
Complete welds on flat plate, pipe, and sheet metal.	4		5-Ind, Prof, Disc, Know Skills ISLO ISLO	Subsets Subsets Subsets Subsets
			ISLO ISLO	Subsets Subsets Subsets Subsets

	ISLO ISLO	Subsets Subsets Subsets Subsets
	ISLO ISLO	Subsets Subsets Subsets Subsets
	ISLO ISLO ISLO	Subsets Subsets Subsets Subsets

KEY	Institutional Student Learning Outcomes [ISLO 1 – 5]
ISLO	ISLO & Subsets
#	
1	Communication Skills
	Oral [O], Written [W]
2	Critical Thinking
	Critical Analysis [CA], Inquiry & Analysis [IA], Problem
	Solving [PS]
3	Foundational Skills
	Information Management [IM], Quantitative Lit,/Reasoning
	[QTR]
4	Social Responsibility
	Ethical Reasoning [ER], Global Learning [GL],
	Intercultural Knowledge [IK], Teamwork [T]
5	Industry, Professional, Discipline Specific Knowledge and
	Skills

^{*}Include program objectives if applicable. Please consult with Program Coordinator

J.	APPLIED LEARNING COMPONENT:	Yes 🔀	No 🔛
	If YES, select one or more of the follow	ing categories:	
	 ☐ Classroom/Lab ☐ Internship ☐ Clinical Placement ☐ Practicum ☐ Service Learning ☐ Community Service 		
[☐ Civic Engagement ☐ Creative Works/Senior Project ☐ Research ☐ Entrepreneurship (program, class, project)		

к.	TEXTS:
Walker	r, John R. and Polanin, W. Richard. (2016). Shielded Metal Arc Welding. Tinley Park, IL: Goodheart-Wilcox.
L.	REFERENCES:
None	
M. transfo	EQUIPMENT: None Needed: Standard welding lab equipment as well as ormer and inverter type SMA welders capable of producing AC and DC current.
N.	GRADING METHOD: A-F
0.	SUGGESTED MEASUREMENT CRITERIA/METHODS:
Home	work, quizzes, tests, lab exercises, and hands on practical exams
Р. <u>[</u>	DETAILED COURSE OUTLINE:
1. Intro	oduction to Shielded Metal Arc Welding and Welding Safety
2. Shie	elded Metal Arc Welding Equipment, Setup, and Operation
Pow	rer Sources
Wel	ding Currents and Voltage

- 3. Electrodes and Selection
- 4. Joint Preparation
- 5. Preparing and Beginning to Weld

Striking an Arc

Electrode Angle

Electrode Travel Patterns

6. Welding Joints

Stringer Beads

Square Butt Joint

Edge Weld

Outside Corner Joint

Lap Joint

Tee Joint

Multi-pass Fillet Welds

7. Welding Passes

Tack Welds

Root

Hot Pass

Filler Weld

Cover Weld

Restarts

8. Welding Positions

Horizontal

Vertical

Overhead

9. Controlling Distortion

- **10. Welding Problems**
- 11. Welding Round Stock
- 12. Welding Pipe
- 13. Cutting with Arc
- 14. Hard Surfacing
- 15. Weld Inspection

- Q. LABORATORY OUTLINE: None \square Yes \boxtimes
- 1. Preparing to Weld
- 2. Stringer Beads
- 3. Joint Preparation
- 4. Welding Butt Joints
- 5. Welding Lap Joints
- 6. Welding Tee Joints
- 7. Welding Multi-pass Filet Welds
- 8. Welding in the Horizontal Position
- 9. Welding in the Vertical Position
- 10. Welding in the Overhead Position
- 11. Welding Pipe
- 12. Arc Welding Aluminum
- 13. Hard Surfacing
- 14. Cutting With Arc