STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

MASTER SYLLABUS WELD 112 – METALLURGY AND TESTING

Created by: Cullen Haskins – 10/22/2020

Updated by:

CANINO SCHOOL OF ENGINEERING TECHNOLOGY

MECHANICAL ENGINEERING TECNOLOGY

FALL 2020

- A. <u>TITLE</u>: Metallurgy and Testing
- B. <u>COURSE NUMBER</u>: WELD 112

C. <u>CREDIT HOURS (Hours of Lecture, Laboratory, Recitation, Tutorial, Activity):</u>

Credit Hours: 3

- # Lecture Hours per Week: 0
- # Lab Hours per Week: 4 hours per week

Other per Week: 0

Course Length (# of Weeks): 15

- D. WRITING INTENSIVE COURSE: No
- E. <u>GER CATEGORY</u>: N/A

F. SEMESTER(S) OFFERED: Spring

G. COURSE DESCRIPTION:

In this course, students learn the basic metallurgy knowledge needed for welding including heat treating. Metal and weld testing processes are also covered.

H. <u>PRE-REQUISITES/CO-REQUISITES</u>:

- a. Pre-requisite(s): None
- b. Co-requisite(s): None
- c. Pre- or co-requisite(s): None

I. <u>STUDENT LEARNING OUTCOMES</u>:

Course Student Learning Outcome [SLO]	<u>PSLO</u>	GER	ISLO
a. Demonstrate a practical understanding of welding based on atomic bonding, diffusion, and phase diagrams.	2		2CA
b. Describe the basic principles of phase change and solidification of metals as well as strengthening mechanisms in metals.	2		2CA
c. Describe how weld variables such as pool shape, travel speed, and cooling rate affect weld microstructure and subsequent properties.	2		2CA

KEY	Institutional Student Learning Outcomes	
	[ISLO 1 – 5]	
ISLO	ISLO & Subsets	
#		
1	Communication Skills	
	Oral [O], Written [W]	
2	Critical Thinking	
	Critical Analysis [CA], Inquiry & Analysis [IA],	
	Problem Solving [PS]	
3	Foundational Skills	

	Information Management [IM], Quantitative Lit,/Reasoning [QTR]	
4	Social Responsibility	
	Ethical Reasoning [ER], Global Learning [GL],	
	Intercultural Knowledge [IK], Teamwork [T]	
5	Industry, Professional, Discipline Specific	
	Knowledge and Skills	

J. <u>APPLIED LEARNING COMPONENT:</u> Yes____ No__X__

If Yes, select one or more of the following categories:

Classroom/Lab	Civic Engagement
Internship	Creative Works/Senior Project
Clinical Practicum	Research
Practicum	Entrepreneurship
Service Learning	(program, class, project)
Community Service	

K. <u>**TEXTS**</u>: N/A

L. <u>REFERENCES</u>: Welding Metallurgy, 2nd Edition, Sindo Kou, ISBN 9780471434917 https://www.wiley.com/en-us/Welding+Metallurgy%2C+2nd+Edition-p-9780471434917

M. EQUIPMENT: N/A

N. GRADING METHOD: A-F

O. <u>SUGGESTED MEASUREMENT CRITERIA/METHODS</u>:

- Homework
- Quizzes
- Tests

P. <u>DETAILED COURSE OUTLINE</u>:

Content is divided into 14 weeks. Introduction to GMAW/FCAW, & Welding Safety

- 1. Basic Principles
 - a. Types of Atomic Bonds
 - b. Metallic Bonding
 - c. Elastic Modulus
- 2. Crystal Structure and Defects
 - a. Defects in Metals
 - b. Solid Solutions
 - c. Line and Planar Defects
- 3. Phase Diagrams
 - a. Types of Phase Diagrams
 - b. Microstructural Evolution
- 4. Diffusion
 - a. Diffusion in Metals
 - b. Interdiffusion of 2 Metals
 - c. Diffusion in Weld Zones
- 5. Strengthening Mechanisms
 - a. Solid Solution Strengthening
 - b. Strain Hardening
 - c. Precipitation Hardening

- 6. Basics of Welding Metallurgy
 - a. Microstructure & Properties
 - b. Metallurgical Processes
 - c. The Fusion Zone
- 7. Dilution
 - a. Calculation of Dilution
 - b. Dilution in Aluminum Alloys
- 8. The Fusion Zone
 - a. Surface Tension/Fluid Flow
 - b. Types of Nucleation
 - c. Heterogeneous Nucleation
 - d. Epitaxial Nucleation at Fusion boundary
- 9. Welding Parameters
 - a. Effect of Travel Speed
 - b. Effect of GL, R, and Composition
 - c. Effect of Cooling Rate
 - d. Weld Metal Epitaxial Nucleation
- 10. Fusion Zone & Boundaries
 - a. Solidification Grain and Subgrain Boundaries
 - b. Migrate Grain Boundary
 - c. Partially Melted Zone (PMZ)
- 11. Microstructure/Mechanical Properties
 - a. Microstructure of 6061-T6 Aluminum Alloy
 - b. Unmixed Zone (UMZ)
 - c. Partially Melted Zone (PMZ)
- 12. Boundaries in Weld Zone
 - a. Grain Boundary Liquation in the PMZ
 - b. The "True" Heat Affected Zone (HAZ)
 - c. Effect of Recrystallization on Mechanical Properties
- 13. Residual Stresses
 - a. Factors Influencing Residual Stresses
 - b. Fundamental Types of Distortion
 - c. Microhardness Testing
- 14. Mechanical Testing of Welds
 - a. Tensile Testing Welds
 - b. Stress-Strain Curves
 - c. Bend Tests
 - d. Fractography

Q. LABORATORY OUTLINE: N/A