1. Find the value of 3x - 4y if x = -2 and y = 5

	To find the value, substitute the given values in for x and y
3x -4y	Substitute (-2) for x and (5) for y
3(-2) – 4(5)	When you multiply a positive number and a negative number, the answer is
	always negative
	When you multiply 2 positive numbers or 2 negative numbers, the answer is
	always positive
(-6) — (20)	Remember when you subtract numbers, you are really "adding the opposite"
(-6) + (-20)	(-6) plus "the opposite of" 20
(-26)	Hint: Visualize a negative sign as backing up. If you back up 6 steps and then
	back up 20 more steps, you have backed up 26 steps. Caution: This is not quite
	true as distance is always positive. You cannot really go a negative distance.

2. Last December, the temperature on a certain day rose from (-7) degrees Fahrenheit to 5 degrees above zero Fahrenheit. How much did the temperature rise altogether that day?

If you cannot solve this problem, try drawing a picture. This asks you to "find the distance between the two temperatures". Remember, distance is always positive.

- (5) (-7) Add the opposite
- (5) + (7) the opposite of (-7) is (+7)
- 12 degrees Always label your answer if possible
- 3. Without a calculator calculate: $24 \div \frac{3}{4} 2 \cdot 4$

Order of operations is important. PEMDAS: Parentheses, Exponents, Multiply/Divide (whichever comes first), Add/Subtract (whichever comes first)

$$24 \div \frac{3}{4} - 2 \cdot 4$$
Division first $24 \cdot \frac{4}{3} - 2 \cdot 4$ To divide fractions, you multiply by the reciprocal (copy-dot-flip)

$\frac{24\cdot 4}{3} - 2\cdot 4$	To multiply fractions, multiply straight across the top then straight across the bottom
$\frac{96}{3} - 2 \cdot 4$	
$32 - 2 \cdot 4$	Order of operations calls for multiplication before subtraction
32 – 8	Subtract (Add the opposite 32 + (-8))
24	

4. What is the slope and y-intercept of the graph? Graph the equation. y = 2x + 3

The equation is in slope-intercept form y = mx + b where *m* is the slope and *b* is the y-intercept Slope = 2; y-intercept = 3

5. What is the slope of the line that goes through the points (1, 4) and (-1, -2)?

Hint: plot the points and connect the dots then count "rise" over "run" OR use the formula which is also $\frac{rise}{run} = \frac{\Delta y}{\Delta x}$ which stands for $\frac{the change in y}{the change in x}$

OR the difference between the y-values divided by the difference between the x-values $\frac{y_2 - y_1}{x_2 - x_1}$

OR subtract the y-values, subtract the x-values then divide y by x

 $\frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - (-2)}{1 - (-1)}$ Substitute the x and y values in

- $\frac{4+(2)}{1+(1)} Add the opposite$
- $\frac{6}{2} = 3$ The slope is 3
- 6. A 42-inch wire is to be cut into two pieces. One piece must be exactly twice as long as the other piece. How long should the shorter piece be?

Hint: Draw a picture.

Let the smallest piece = x

Let the bigger piece be twice as long as x (or 2x)

Together the pieces must be 42 inches.

X + 2x = 42	Set up the equation using what you know
3x = 42	Combine like terms
$\frac{3x}{3} = \frac{42}{3}$	Get x by itself (divide both sides by 3)
x = 14 in.	The shorter piece is 14 inches the longer piece is 28

Check: One piece is 14 in. and the other is twice 14 = 28 in. Together 14 + 28 = 42 inches

7. Solve for x: $2(x-3) =$	3x + 5
2(x-3) = 3x + 5	Order of operations: PEMDAS
2x - 2(3) = 3x + 5	Use the distributive property to remove parentheses
2x - 2x - 6 = 3x - 2x + 5	Get variables on same side of equal sign (Subtract 2x from each side)
-6+(-5) = x + 5 - 5	Move constants to same side of equal sign (Add opposite)
(-11) = x	
Check: $2(x-3) = 3x + 5$	
2(-11 - 3) = 3(-11) + 5	
2(-11 + -3) = -33 + 5	
-28 = -28	

8. Multiply: $3x^2(5x^3 - 2x + 7)$ What is the numerical coefficient of the first term? 15 What is the numerical coefficient of the second term? -6 What is the numerical coefficient of the third term? 21 What is the degree of the first term? 5 What is the degree of the second term? 3 What is the degree of the third term? 2

 $3x^2(5x^3 - 2x + 7)$ Use the distributive property to remove parentheses $15x^5 - 6x^3 + 21x^2$ You add the exponents when multiplying

A numerical coefficient is the number in front of the variable The degree is the power or exponent

Hint: If you cannot remember if you are adding or multiplying the exponents, write the whole thing out without exponents.

Ex: $x^2 = xx$ and $x^3 = xxx$ so altogether you have $xx \cdot xxx = xxxxx = x^5$

9. The length of a rectangular bed is 2 feet less than 2 times its width. Find the length of the bed if the perimeter is 32 feet.

L =
$$2(6) -2$$

= $12 - 2$
= 10 ft
L = $2(6) -2$
= $12 - 2$
= 10 ft
L = $2(6) -2$
= $12 - 2$
= 10 ft

10. Simplify the expression: $\frac{1}{2} - \frac{3}{8} + (-5)$ leave your answer in fractional form To add or subtract fractions, you must have a common denominator

8 is common to both denominators so change ${\ensuremath{\rlap/}{2}}$ to $8^{\ensuremath{\text{ths}}\xspace}$

1⁄2 = 4/8 so

4/8 - 3/8 + (-5)

1/8 + (-5) change -5/1 to 8^{ths}

11. Solve for B: A = BC + D A - D = BC + D - D We are trying to get B by itself: Subtract the D from both sides A - D = BC Still trying to get B by itself: divide each side by C $\frac{A-D}{C} = \frac{BC}{C}$ $\frac{(A-D)}{C} = B$

12. Evaluate the algebraic expression
$$\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$
 when a = 2, b = -3, and c = -2

$$\frac{-(-3)\pm\sqrt{(-3)^2-4(2)(-2)}}{2(2)}$$
 Substitute all values in and follow order of operations
$$\frac{-(-3)\pm\sqrt{9-(-16)}}{4}$$

 $\frac{3\pm\sqrt{9+16}}{4} = \frac{3\pm\sqrt{25}}{4} = \frac{3\pm5}{4} \text{ now there are 2 answers}$ $\frac{3+5}{4} = \frac{8}{4} = 2 \text{ and } \frac{3-5}{4} = \frac{-2}{4} = -\frac{1}{2}$

- 13. If 5 gallons of stain are needed to stain 2 wooden decks, how many gallons are needed for 5 decks?
- 5 gallons = 2 decks

? gallons = 5 decks

 $25x^{6}y^{8}$

This is a proportion problem. Set it up by keeping like quantities in the same places: gallons to gallons and decks to decks

 $\frac{gallons}{gallons} = \frac{decks}{decks}$ $\frac{5}{x} \frac{gallons}{gallons} = \frac{2 \ decks}{5 \ decks}$ $\frac{5}{x} = \frac{2}{5} \quad \text{Solve by cross multiplying}$ $5 \ (5) = x \ (2)$ 25 = 2x 25/2 = 2x/2 12.5 = x $12 \ \% \text{ gallons}$ $14. \ \text{Simplify:} \ (5x^3y^4)^2$ $(5x^3y^4)^2 \quad \text{means} \ (5x^3y^4)(5x^3y^4) \text{ now multiply}$ $5 \cdot 5 \cdot x^3 \cdot x^3 \cdot y^4 \cdot y^4$

15. Everything in the hardware store is on sale for a 25% discount. What would a hammer that was originally priced at \$16.95 cost on sale?

Discount means Less or subtract Find 25% of the original cost and then subtract to find the sale price

\$16.95 (25%) \$16.95 (.25) = \$4.2375 or \$4.24 \$16.95 - \$ 4.24 = \$ 12.71