Assessing the Performance of Ultrafine Asphalt Mixtures with

Recycled Asphalt Pavement (RAP) for Road Rehabilitation

By Muhammad, Eloge and Sebastien Professor: Dr. Seitllari

Topic Outline

- What is RAP?
- Benefit and uses of RAP
- Methodology: Material and Laboratory tests
- Analysis of the results
- Conclusion

What is RAP?

- A prior pavement structure is made up of aggregate and asphalt binders
- Manufactured by milling, fracturing, and grinding aging pavements
- After then, RAP is mixed with fresh, virgin pavements.

What is RAP?

History of RAP use

- USDOT: First used in 1915
- Major emphasis started in 1970's
- Oil embargo and increased oil prices
- Improved milling machines
- In several states, became commonplace

Uses

- New Pavement
- Subbase materials
- Repaving already-existing roads
- Repairing the exits roads, Such as cracks

Max. RAP % - Batch		ch Plants	Max. RAI	P % – Druna Plants		Top Size						
	Base	Binder	Surface	Base	Binder	Surface	for RAP					
	40	40	15	50	50	15	2 in					
	-	-	-	-	-	-	1.64					
	30	30	30	30	30	30	15 m 2 m					
	50	50	50	50	50	50	2 m					
	16	16	16	16	16	16	1.6					
	40	40	40	40	40	40	15					
	35	35	25	50	50	30	2 m					
	60	50	None	60	50	None	Specs					
	25	25	25	40	40	40	2 in					
	30	None	None	40	None	None	15 in					
	Open	Open	Open	Open	Open	Open	2 m					
	30	25	15	50	25	15	Specs					
	50	50	20	50	50	20	2 in					
	Open	Open	Open	Open	Open	Open	15 in					
	50	50	50	50	50	50	2 in					
	30	30	30	30	30	30	Specs					
	30	30	None	30	30	None	2 in					
	40	40	None	40	40	None	lm					
_	open	Open	Limit	ार्ण्य	open	Lun	apecs					
	20	20	10	40	40	10	.75 in					
	50	50	50	50	50	50	Specs					
	39	30	30	30	20	30	3 m					
	50	50	50	50	50	50	⊿m 15m					
-												
	50	50	10	50	50	10	2 in	Ê	T	Ĩ	1	- Ĩ
	Not Used	Not Used	Not Used	Open	Open	Open	2 m	New Mexico	Open	Open	Open	
	30	30	15	50	50	15	15 m	New York	50	50	None	
	25	25	10	25	25	10	2 in	North Dakota	50	50	50	
								Ohio	50	35	20	
					1	1					1 AN 1	
				Orianoma	20	20	Pione	20	20 20	none	1 in	
				Dennevitrania	Open	Open	Open	Open	Open	Open	2 m	
				Fhode Island	30	30	None	30	30	None	125 m	
				South Carolina	30	25	20	30	25	20	2 in	
				South Dakota	Not Used	Not Used	Not Used	50	50	50	15 in	
				Termessee	15	Open	None	Open	Open	None	Open	
				Texas	15	Open	Open	Open	Open	Open	2 in	
				Utah	Not Used	Not Used	Not Used	25	25	25	2 in	
				Vermont	Specs.	Specs.	Specs	Specs	Specs	Specs	Specs	
				Virginia	25	25	25	25	25	25	2 in Open	
				Washington	Open	Open	Open	Open	Open	Open	Open	
				west virginia	Open	Open	Open	Open	Open	Open	Open	
				Wisconsh	open so	50	20	open 50	50	20	Open .	
				w) out at a	50	00	50		50	50		

Table 13-3. State DOT specification requirements for the use of reclaimed asphalt pavement (RAP) in hot mix asphalt paving mixtures.⁽¹³⁾

Open 70

60

50

50

Open 70 60

50

35

15 m

2 in

2 in

lm

2 in

Open

None

60

50

20

State

Alabama Alaska Arizona Adkansas California Colorado Connecticut. Delaware Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska

Nevada

Hampshire

New Jersey

New

The benefit of using RAP

- Environment and the Economy
- Maintenance and rehabilitation activities consist of periodic placement of the surface layer of asphalt concrete and involve costly activities
- Cost-effective materials, including ultra-fine mixture mixes, suitable replacements for applications involving pavement maintenance.

CANTON

Cost Savings

- Decreases the need to mine additional aggregate
- Reduces aggregate production, processing, and transportation energy/ costs
- Reduces the need for asphalt

Environmentally Friendly

- Reducing waste
- Conserving resources: reusing RAP materials, can reduce the need for new resources such as virgin asphalt, aggregates, and petroleum products
- Saving energy: RAP materials often use less energy than manufacturing new materials, lower greenhouse gas emissions

Materials and laboratory tests

- Aggregate gradations, recycled material properties, and characteristics of the asphalt mixtures
- Tests conducted to improve the sustainability of construction materials, and environmentally friendly
- Extraction binder evaluation, Cantabro mass loss, dynamic modulus, indirect tensile asphalt cracking, repeated permanent load deformation, and asphalt pavement analyzer.

Table 1 Mix Designs for Ultra fine Asphalt Mixtures

Production Year	2014	2015	2015	2015	2015	2015
Lab ID	Α	в	С	D	E	F
Mix	SM-4.75 A	SM-4.75D	SM-4.75 A	SM-4.75A	SM-4.75A	SM-4.75D
Asphalt Content (%)	6.2%	6.3%	6.3%	6.0%	5.7%	6.0%
RAP Content (%)	20%	20%	30%	30%	30%	30%
Natural Sand	-	23%	24%	-	15%	-
Virgin binder Grade	PG 64S-22	PG 64H-22	PG 64S-22	PG 64S-22	PG 64S-22	PG 648-22

Table 2 Mixture Volumetric Properties and Gradation for Ultra fine Asphalt Mixtures

	Mix ID				- Construction (California - Marcal - Mar			
Property	Α	В	С	D	Đ	F	VDOT Specification	
% AC	6.39	6.63	6.38	6.42	5.75	6.24		
Rice Specific Gravity (Gmm)	2.532	2.590	2.453	2.630	2.649	2.475		
% Air Voids (V_a)	4.6	4.6	4.7	3.9	5.8	4.4		
% VMA	18.4	20.5	18.4	19.4	19.3	17.8	16.5	
% VFA	75.2	77.6	74.6	80	70	75.4	70-80*	
Fines/Asphalt Ratio	1.24	1.17	1.42	1.48	1.61	1.39	$1.0 - 2.0^+$	
Bulk Specific Gravity (Gmb)	2.416	2.471	2.338	2.528	2.496	2.367		
Aggregate Specific Gravity (G _{sb})	2.773	2.902	2.683	2.936	2.916	2.700		
% Binder Absorbed (Pba)	0.52	0.00	0.34	0.10	0.17	0.42		
Effective % Binder (Pbc)	5.91	6.63	6.06	6.33	5.59	5.84		
Effective Film Thickness, (E_{be})	7.1	8.2	6.8	7.4	6.6	6.9		

Table 3 Gradation for Ultra fine Asphalt Mixtures

Sieve Size							Maximum	Minimum	
3/4 in (19.0 mm)	100.0	100.0	100.0	100.0	100.0	100.0			
1/2 in (12.5 mm)	99.6	100.0	99.8	100.0	100.0	100.0	-	100	
3/8 in (9.5 mm)	97.6	98.8	97.5	99.0	100	99.7	100	95	
No. 4 (4.75 mm)	85.7	92.0	86.9	86.9	93.2	84.9	100	90	
No. 8 (2.36 mm)	60.4	71.3	67.2	58.5	66.9	62.8	1415	1110 1	
No.16 (1.18 mm)	46.2	52.0	52.4	41.2	44.7	47.4	55	30	
No. 30 (600 μm)	35.8	36.2	39.0	30.0	31.2	34.4	-	140 1	
Νο. 50 (300 μm)	24.8	20.3	24.1	21.5	20.7	22.7	-	-	
No. 100 (150 μm)	13.8	11.9	13.3	14.5	13.2	14.0	-	19 1 0	
No. 200 (75 μm)	7.35	7.74	8.61	9.35	9.0	8.10	13	6	
	10 10 2 K 1		- N	3426 38 90ee09	SA CAR DAVA D				

*During the production of an approved job mix, the VFA shall be controlled within these limits.

⁺Fines/Asphalt Ratio is based on effective asphalt content.

CANTON

STATE UNIVERSITY OF NEW YORK

Extracted Binder Evaluation Tests

The extraction of binder from the loose mixture followed the guidelines outlined in AASHTO T 164, using n-propyl bromide as the solvent. The Rotavap recovery procedure, specified in AASHTO T 319, was then employed to recover the binder from the solvent for performance grading, as per AASHTO M 320

Cantabro Mass Loss

- Test specimens were compacted to N_{design} and tested three times.
- These specimens were then placed into a Los Angeles abrasion machine and rotated at a speed of 30 rotations per minute for 300 rotations. The degree of relative mass loss observed in the specimens measures the durability of dense-graded asphalt mixtures.

Dynamic Modulus Test

- The AASHTO R84 guidelines
- Gyratory-compacted asphalt samples were tested at six frequencies (0.1 Hz to 25 Hz) and four temperatures (4.4°C to 54°C), as per AASHTO R83, with a target air void content of $7 \pm 0.5\%$ for each specimen.
- Tests were conducted in the uniaxial mode without confinement, and stress versus strain values was continuously recorded to calculate the dynamic modulus. The results for each mixture type at each temperature-frequency combination are reported in triplicate

N_{flex} Factor

- The cracking resistance of asphalt mixtures, was performed using the 2017 AASHTO method
- Specimens were compacted to N_{design} using a gyratory compactor, then cut to a size of 50 ± 5 mm before being tested using an Instrotek Auto-SCB load frame equipped with a 50 kN load cell.

Indirect Tensile Asphalt Cracking Test

- This test aims to assess the cracking resistance of asphalt mixtures at intermediate temperatures.
- A cylindrical specimen, typically 150 mm in diameter, is subjected to a monotonic load at a constant displacement rate of 50 mm/min. The corresponding load-displacement curve is analyzed to obtain the crack performance index of the asphalt mixtures, referred to as the CT_{index}.

STATE UNIVERSITY OF NEW YORK

Repeated Load Permanent Deformation

- The repeated load permanent deformation (RLPD) test, also known as the flow number test, was employed per AASHTO T 378. Sample preparation and air void content were similar to |E*| tests.
- Proper calibration of the MEPDG rutting model requires selecting appropriate testing temperatures and suitable triaxial stresses in the RLPD test.

Asphalt Pavement Analyzer

- The APA test complied with Virginia Test Method 110
- The gyratory compactor was used to compact the specimens, targeting $8 \pm 0.5\%$ air voids.
- A vertical load of 533 N was applied to the specimens through a rubber hose filled with compressed air at a pressure of 830 kPa. Rutting depths were measured after subjecting the specimens to 8,000 load cycles at the left, middle, right, and average rut depth positions.

CANTON

RESULTS

Binder Tests

Table 4 Extracted Binder Data Results

Property	Mix ID									
	Α	В	С	D	E	F				
RTFO* failure temperature	74.36	78.03	76.5	77.4	82.83	71.93				
ΔT _c , °C	-13.6	-4.7	-3.8	-1.4	-2.0	-1.7				
Stiffness failure temperature	-32.6	-25.9	-27.5	-26.0	-24.7	-26.0				
M-value failure temperature	-19.0	-21.3	-23.7	-24.5	-22.8	-24.4				
Performance grade	70-16	76-16	76-22	76-22	82-22	70-22				

*RTFO = rolling thin film oven

RESULTS

Binder Tests

Graph. 1 Percent recovery and $G^*sin \delta$ of extracted binders.

RESULTS

Binder Tests

Non-recoverable creep compliance (Jnr) and G*sin/δ of extracted binders

Graph. 2 Non-recoverable creep compliance (J_{nr}) and G^*sin/δ of extracted binders.

Cantabro test results

Graph. 3 Cantabro mass loss results for tested mixtures.

Dynamic Modulus Test

54°C; (c) log-log scale dynamic modulus master curves and (d) linear-log scale dynamic modulus master curves

CANTON

STATE UNIVERSITY OF NEW YORK

Dvnamic Modulus Test

Graph 4. Dynamic modulus results: (a) measured dynamic modulus values at T = 21°C and (b) T = 54°C; (c) log-log scale dynamic modulus master curves and (d) linear-log scale dynamic modulus master curves

Dynamic Modulus Test

Graph. 4 Dynamic modulus results: (a) measured dynamic modulus values at $T = 21^{\circ}C$ and (b) $T = 54^{\circ}C$; (c) log-log scale dynamic modulus master curves and (d) linear-log scale dynamic modulus master curves

|E*| (psi)

N_{flex} Factor

Graph. 5 N_{flex} factor results for tested mixtures.

Indirect Tensile Asphalt Cracking Test

Fig. 6 CT_{index} results for tested mixtures.

Repeated Load Permanent Deformation

Fig. 7 Flow number results for (a) unconfined condition; (b) confined condition.

Asphalt Pavement Analyzer

Graph 7. Average APA rut depth test results.

Statistical Comparison of Asphalt Mixture Performance Tests

		Mix ID									
Test	Evaluation	Α	В	С	D	Ε	F				
	Parameter										
Cantabro	Mass loss	Α	Α	Α	В	Α	Α				
IDT	N _{flex} factor	A, B	С	B, C	А	Α	D				
IDEAL-CT	CTindex	Α	В	B, C	В	В	С				
APA	Rut depth	_b	Α	Α	Α	Α	А				
Unconfined RLPD	Flow number	В	В	В	Α	В	В				
Confined RLPD	Flow number	Α	Α	В	Α	A, B	Α				

Table 5 Tukey Pairwise Comparison of Cracking Tests

^b No rutting deformation was experienced by mixture A.

Conclusions

- RAP can be used in new asphalt pavements as well as maintenance and rehabilitation projects for existing pavements
- lower construction costs
- conserve natural resources
- avoid using landfills, and improve sustainability
- Possible to achieve cracking resistance for high RAP mixtures that is similar to the cracking resistance of non-RAP mixes by using a lower-grade virgin binder to counteract the aged binder in high RAP combinations.

