

Introduction

Due to poor ergonomics, lack of height adjustability, and cumbersome design, traditional lawn-trimming tools often cause discomfort, including lower back pain, numb hands, and strain. A lightweight, adjustable, and ergonomic solution that minimizes physical strain while ensuring efficient lawn care is

needed.

Figure 1: The physical strain experienced from weed whacking.

Design Requirements

Design Requirmenets				
Level 1	Level 2			
basic	Simutanious operation of vehicle and trimmer			
basic	Easily accesable emergency stop			
basic	Translation of the trimmer head in the horizontal plane			
performance	Long battery life			
performance	Operatable without intervention on 90% of lawn terrains			
performance	Removable batteries			
performance	Gaurds to potect from weed spray			
excitement	Rotation of trimmer head around at least one horizontal axis			
excitement	Connection range 40ft/min			
excitement	Simple controls			
excitement	Means for string release			

Background / Research

Parts Selection / Terminology

Capstone Objectives

- whack
- Assemble the Spyker Robot RC tank
- Research, design, build, and test two mounting arms to hold a battery powered weed whacker head and determine the best option
- Present a poster presentation and submit a design report

House of Quality

-	Eng			
mutanious operation of vehicle and trimmer	otation of trimmer head around at least one horizontal axis	anslation of the trimmer head in the horizontal plane	ng battery life	eans for string release

Pre-liminary Analysis

Items	
2X Spyker KAT	
Tactic RC controller	
Black filament	
Black filament return fee	
Servo 5th scale	
Ego weed trimmer	
12-volt battery	
Spyker STL files (missing piece	S
Spyker STL files (Top)	
Electrical wire 12 gage	
Miscellaneous expenses	
Bearings	
Total (Actual)	
Total Submitted for Proposal	

Brush Buster

By Trina Thompson, Owen Walley, Natasha Wray Dr. Lucas Craig, Cullen Haskins, Mechanical Engineering Technology, Capstone

Research and design a remote-control device to weed

Budget:

Link	Cost	Quantity	Subtotal
SpykerWorkshop	\$2,305.00	1	\$2,305.00
Amazon	\$ 73.99	2	\$ 147.98
Amazon	\$ 27.98	2	\$ 55.96
Creality	\$ 12.90	1	\$ 12.90
Amazon	\$ 36.99	4	\$ 147.96
Lowes	\$ 329.00	1	\$ 329.00
Home Depot	\$ 27.00	3	\$ 81.00
Spyker Workshop	\$ 40.00	1	\$ 40.00
Spyker Workshop	\$ 8.00	1	\$ 8.00
Amazon	\$ 19.99	2	\$ 39.98
	\$ 50.00	1	\$ 50.00
	\$ 50.00	1	\$ 50.00
		20	\$ 814.80
			\$ 964.72

Development of Mounting Arms Arm 1 Arm 2

Shift to electronics box

Construction of Arm/etc.

Final Design

Experimental Results

Summary

This project involved designing and building a remotecontrolled (RC) tank modified to carry and operate a weed trimmer for autonomous or remote vegetation clearing. The primary objective was to create a compact, mobile platform capable of trimming grass and weeds in hard-to-reach or potentially hazardous areas without human intervention.

Complications

- Timing and communication with fellow partners
- Start with inventor models early for several redesigns

Future Work

- Getting the weed trimmer and the RC controlled by one interface
- Getting more range of motion
- Sensors to detect something near or interfere and its emergence stop
- mapping for the backyard to auto-trim