Special Thanks

Mr. Neil Haney Dr. Lucas Craig Mr. Cullen Haskins Jim Dahl and John Feneck

Moving Target System

On-Point Engineering

Forest Hall, Nathaniel Klinger, Steve Dahl, Eric Roach

MECH 477 Spring 2023

Introduction

Our Capstone is to design a moveable target system for Mr. Neil. He has a hunting camp and wants to have a moving target system that can be remote controlled and posited between two random trees for operation (Fig. 1) for target practice.

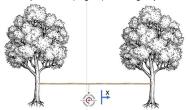


Fig. 1: Moveable Target Schematic.

Design Requirements

Quick install time (10 min)

- Light weight (10 lbs)
- Run time (45 min)

Background

Two Methods:

•	Moves entire system along the line
	Target is attached to the System

Electric DC Motor

Tree Mounted

- Moves the line through the system Target is attached to the line
 - Flectric DC Motor

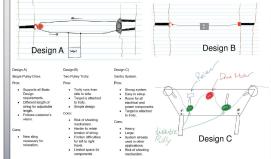
Key Elements throughout the Design:

- Compact
- Lightweight

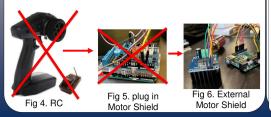
- Durable Easy to set up
 - Interchangeable Parts 3D Printed Prototype

Fig 2. DIY Setup

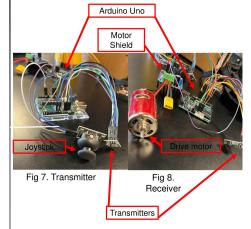
Fig 3. Military grade target system


Capstone Objectives

- Design a moveable target system
- Implement 3D modeling using Autodesk Inventor/ Solid Works
- · Design and construct the radio control system
- · Construct and experimental test the moveable target system
- · Search for potential patents future work is to patent this device
- · Provide detailed design analysis and provide an engineering poster and design report


Weighted Objectives Table

		FULL TROLLY		TWO PULLEY TROLLY		SINGLE PULLEY DRIVE	
CRITERIA	WEIGHT	SCORE	WEIGHTED	SCORE	WEIGHTED	SCORE	WEIGHTED
MUST FIT IN (18x13x7) in. HARD SHELL CASE	12%	2	0.24	3	0.36	4	0.48
SMALL REMOTE CONTROL (HAND SIZE)	9%	5	0.45	5	0.45	5	0.45
ADJUSTABLE IN LENGTH (8-12) ft.	8%	2	0.16	5	0.4	5	0.4
LIGHT WEIGHT (10lbs)	10%	1	0.1	3	0.3	4	0.4
HAS END STOPS	5%	3	0.15	2	0.1	3	0.15
VARIABLE SPEED (1-10) ft/s	8%	3	0.24	4	0.32	- 4	0.32
INTERCHANGABLE TARGETS	10%	- 6	0.5	5	0.5	6	0.5
QUICK ASSEMBLY (10min)	18%	3	0.54	3	0.54	4	0.72
Y-AXIS MOVEMENT (3ft)	2%	1	0.02	+	0.02	+	0.02
PROGRAMMED EXERCISE (3)	4%	4	0.16	2	0.08	4	0.16
MULTIPLE FIREARMS	3%	5	0:45	- 5	0.15	5	0:15
FULLY 3D PRINTED	11%	3	0.33	3	0.33	4	0.44


Initial Designs

Electrical Designs

Experimental Setup

Testing

- •RPM Testing with NEIKO digital tachometer.
- •Tensile testing on string.
- •Radial load till stall, varied based on RPM.

Fig 9. Tensile Test Machine

Design Phase

Design 1:

- •Gantry System
- •2 Plates Front & Back
- •Line runs through 2 pullies
- Target Hangs below system

Design 2:

- •Same electronics Fig 11. Design 1
- Entire system was rotated 90 Degrees
- Enclosed tree side
- Pully would help vent the ESC and motor

Final Design

- Design revolves around motor assembly and electronics
- Fully enclosed
- Waterproof
- ·Significantly more durable
- Potential for Future improvement

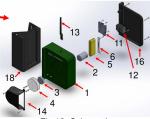


Fig 13, Schematic

	_ /
0	
	10

Fig 14. Internal Design

1 6676468-01 Mounti		Mounting Plate	-1
2	6676468-02 65T Motor		-1
3	6676468-03	Motor Coupling	1
4	6676468-04	Drive Pully	-1
5	6676468-05	2\$ Lipo Battery	-1
6	6676468-06	Battery Bracket	-1
7	B1B.3.1M - 3 x 0.5 x 10 Hex SHCS - 10NHX	M3x10 SHCS	8
8	B18.3.1M - 4 x 0.7 x 12 Hex SHCS - 12NHX	M4x12 SHCS	4
9	DPM 0.125x1	1/8' Dowel Pin	-1
10	B18.3.1M - 3 x 0.5 x 12 Hex SHCS — 12NHX	M3x12 SHCS	2
11	6676468-07	Arduino Uno	-1
12	6676468-08	DC Motor Shield	-1
13	6676468-09	Transmitter	1
14	6676468-10	Puly Cover	-1
15	B18.3.1M - 3 × 0.5 × 20 Hex SHCS - 20NHX	M3x20 SHCS	3
16	6676468-11	Cover Plate	-1
17	818.3.1M - 4 x 0.7 x 30 Hex SHCS - 20NHX M4x30 SHCS		4
18	6676468-12	Tree Bracket	- 1

DESCRIPTION QTY.

Fig 15. Bill of Materials

Future Work

- Patent Search
- Add longer range Transmitters
- Design changes for ease of use
- Making component out of all aluminum

Project Contributions

Name:	Forest Hall
	Contribution:
	Draft Poster
	Draft Report
	30 printing Design Protoypes
Made Purc	hase List for Mr. Haney regarding all Electronics
All wiring an	d coding for Arduino, motor, and remote Control
	Communciated design ideas
One on One o	ommunication with Mr. Haney on Wiring Update

Eric Roach

Contribution:	Contribution:	Contribution:		
Modified Gantry Design	Saffey Manual creation	Compiled notes from presentation vid		
Initial Tree Mounted Design	Machined a coupler, later was outsourced	Assisted in the design by consultation		
tree mounted design w/ new components	Helped with purchase lists	Made multiple purchase lists		
rinted test parts for fits/bolt patterns	Tensile Testing and Recording of Data	All wiring and testing of RC setu		
rced coupling to be professionally made		RPM testing		
elped run initial tests with RC setup		Designed coupler for pulley		
nultiple design configurations (pullies)		Gone to purchase material for proje		