SPECIAL THANKS

Toby Lancto for donating the snowblower!

RC Snow Blower

Mark Hager Jr., Tristen Horton Dr. Lucas Craig — Mech 477 Capstone Project

Introduction

This Capstone Project aims to take an existing snowblower and provide remote-control motion (forward and reverse). This will involve...

Design Criteria

Engaging System

- Low cost: ~ \$100
- Simplicity
- High Effectiveness-0.17

Motion System

- Low cost: ~\$120
- High Effectiveness 0.15
- Long-term sustainability
- Programable to increase or decrease

Preliminary Designs

Engaging System

Weighted Objectives Table

Drive control			#1		- 22
Comparison Criteria	Weight	Score	Weight	Score	Weight
Cost	8	2	16	2	16
Difficulty	5	3	15	2	10
Sustainability	10	2	20	4	40
Effectiveness	10		50	5	50
Total:	33	Total:	101	Total:	116

Capstone Objectives

- Design an electro-mechanical system for engaging the motion
- Design an electro-mechanical system to forward and reverse
- Create a remote-control system using Arduino for forward and reverse motion
- Create a design report and poster presentation.

Research

(Snawbat, 2021)

Both existing models are not remote-controlled, but they are fully autonomous. Some future work for our project would be to make our blower independent like these.

Motion System

Weighted Objectives Table

Motion System		A1		#2	
Comparison Critisfa	Weight	Score	Weight	Score	Weight
Cost	8	2	16	3	24
Difficulty	- 5	3	15	1	5
Sustainability	10	. 5	50	3	30
Effectiveness	10	15	50	4	40
Total	22	Total	121	Total:	90

Final Designs / Results

<More models to come>

Experimental Testing

<More photos to come>

Contributions

troop	ares.	Tysthesi		
	Selektoped two concepts for turning sydein, 64 or	quant concepts for beining to sten		
Design Report		Greated code for motion		
Corty Barborn	Grand Pritin educing formatting, adding reformation and graphics, FALE	respect with Fib		
	decounted sent to problems solving and design for engage/(desengage to stein	Grand and waked as legage/ desergage option		
	assumed with problem solving and design for forward/owerse system	Designed Cuard/Reserve System		
	Michigan .	Arrestables (Sessgred Allphysical par		
	tigned up for ticholock dictardes	20-00-08-08-08-08-08-08-08-08-08-08-08-08		
	Braheltor Models			

Complications

- Initial design for the engage system failed
- Time constraints with a two-man team was limited

Background

Initial Testing